Zelio[®] Logic 2 Programmable Smart Relays

Modbus[®], Telemecanique[®], Zelio[®], Twido[®], and Phaseo[®] are registered trademarks of Schneider Electric. Other trademarks used herein are the property of their respective owners.

Contents

Zelio[®] Logic 2 Programmable Smart Relays

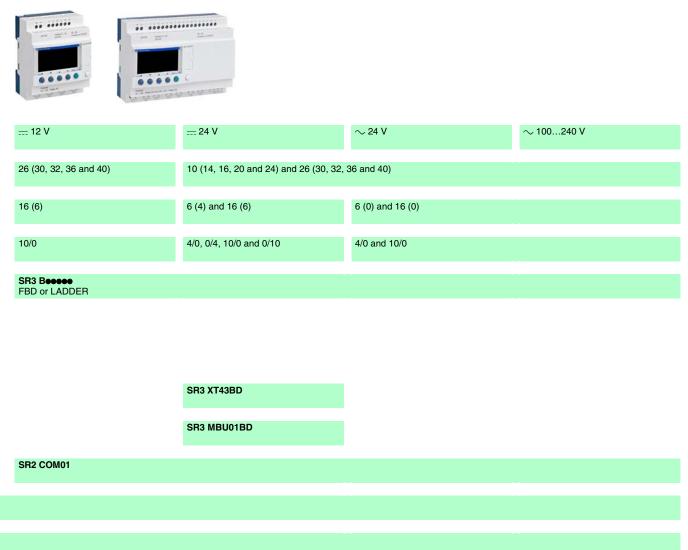
Selection guide pages 4 to 3

Compact and modular smart relays

Presentation pages 8 and 9
Description
■ Functions
Characteristics
Curves pages 18 and 19
■ References
Dimensions, mounting page 23
Schemes

Modbus[®] network slave communication module

Presentation	page 28
Description, characteristics	page 29
Functions	page 30
References dimensions mounting	nage 31


Modem communication interface

Presentation, description
■ Functions pages 34 and 35
Setting-up page 36
Characteristics
■ References
Dimensions page 39
Connections pages 40 and 41

Power supplies

-	Presentation
	Characteristics, selection
	References, dimensions, mounting page 45

Smart relay type	Compact smart relays					
Supply voltage	12 V	24 V	\sim 24 V	\sim 100240 V		
Number of I/O (maximum number of I/Os with extension modules)	12 and 20	10, 12 and 20	12 and 20	10, 12 and 20		
Number of discrete inputs (including analog inputs)	8 (4) and 12 (6)	6 (0), 8 (4), 12 (2) and 12 (6)	8 (0) and 12 (0)	6 (0), 8 (0) and 12 (0)		
Number of "relay"/"transistor" outputs	4/0 and 8/0	4/0, 0/4, 8/0 and 0/8	4/0 and 8/0			
With display, with clock Programming language	SR2 Beeeee FBD or LADDER					
With display, without clock Programming language		SR2 Access LADDER only		SR2 Access LADDER only		
Without display, with clock Programming language		SR2 E				
Without display, without clock Programming language		SR2 Deeeee LADDER only		SR2 Deeeee LADDER only		
Analog I/O extension modules (see page 21) Modbus [®] network slave communication module						
(see page 31)		000 00000				
Modem communication interface (see page 38)	SR2 COM01	SR2 COM01 (for SR2 B and SR2 E)	SR2 COM01	SR2 COM01 (for SR2 B and SR2 E)		
EEPROM memory cartridge (see page 22)	SR2 MEM02	SR2 COM01				
"Zelio Soft 2" software (see page 22)	SR2 SFT01					
"Discovery" packs		SR2 PACK•BD (see page 20)		SR2 PACKoFU (see page 20)		
Power supplies for d.c. control circuit (see page 45)	ABL 7RM1202	ABL 7RM240ee				
References	SR2 BeeeJD	SR2 eeeeBD	SR2 eeeeB	SR2 eeeeFU		
Page 1) FBD: Function Block Diagram.	20	20	20	20		

	SR3 PACKeBD (see page 21)		SR3 PACK•FU (see page 21)
ABL 7RM1202	ABL 7RM240		
SR3 B261JD	SR3 BeeeBD	SR3 Bee1B	SR3 Bee1FU
21	21	21	21

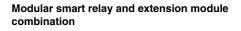
(1) FBD: Function Block Diagram.

Modular smart relays

Zelio[®] Logic 2 Programmable Smart Relays Extensions and interfaces

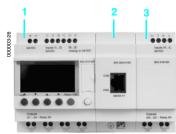
Product types	Discrete I/O extensi	on modules		
Supply voltage	via SR3 B261JD (<u></u> 12 V)	via SR3 B●●●BD (<u></u> 24 V)	via SR3 B●●1B (〜 24 V)	via SR3 B●●1FU (~ 100240 V)
Number and type of I/O	Discrete inputs/output	ts: 6, 10 and 14		
Number and type of inputs	Discrete inputs: 4, 6 a	and 8		
Number and type of outputs	Relay outputs: 2, 4 a	nd 6		
Programming software	"Zelio Soft 2" SR2 SF	T01 (see page 22)		
Alarms management software				
References	SR3 XTeeeJD	SR3 XTeeeBD	SR3 XTeeeB	SR3 XTeeeFU
Page	21	21	21	21

Analog I/	O extension	n modules	Modbus [®] network slave communication module	Modbus [®] communication interface	Power supplies for d.c. control circuit
					L N Contraction of the second
via SR3 E (24 V)			via SR3 B●●●BD (24 V)	12 to 24 V	\sim 100240 V single-phase
Analog in 0-10 V 2 1 0 1 0	puts/outputs: puts: 2 0-20 V 0 1 2 0 1 1 utputs 0-10 V	Pt100 0 0 0 1 1 1	 Number of words: 4 (inputs) 4 (outputs) 1 (status) Maximum number of slaves: 32 Maximum number of slaves with repeaters: 247 	Functions alarm sending receipt of instruction remote dialogue with Zelio Soft 2 software: Transfer Monitoring Diagnostics 2 types of modem: analog (PSTN) modem GSM modem	Nominal output voltage.: • 12 V • 24 V Nominal output current: • 1.9 A (12 V) • 1.3 A (24 V) • 2.5 A (24 V)
				"Zelio Logic Alarm" SR2 SFT02 (see page 38)	
SR3 XT	43BD		SR3 MBU01BD	SR2 COM01	ABL 7RMessee
21			31	38	45


Presentation

Zelio[®] Logic 2 Programmable Smart Relays

Compact and modular smart relays


SR2 B121BD

Modular smart relay (10 or 26 I/O)

2 Discrete I/O (6, 10 or 14 I/O) or analog I/O (4 I/O) extension module

- 1 Modular smart relay (10 or 26 I/O)
- 2 Network communication module
- 3 Discrete I/O (6, 10 or 14 I/O) or analog I/O(4 I/O) extension module

▲ The order shown above must be observed when using a Modbus network slave communication module and a discrete or analog I/O extension module. An I/O extension module cannot be fitted before the Modbus network slave communication module.

Presentation

Zelio Logic 2 programmable smart relays are designed for use in small automation systems. They are used in both the industrial and commercial sectors.

For industry:

□ automation of small finishing, production, assembly or packaging machines.
 □ decentralized automation of ancillary equipment of large and medium-sized machines (textile, plastics, materials processing sectors, etc.)

□ automation systems for agricultural machinery (irrigation, pumping, greenhouses, etc.).

■ For the commercial/building sectors:

□ automation of barriers, roller shutters, access control,

automation of lighting systems,

□ automation of compressors and air conditioning systems.

Their compact size and ease of setting-up make them a competitive alternative to solutions based on cabled logic or specific cards.

Programming

Simple programming, ensured by the universal nature of the languages, meets all the requirements of automation specialists and also the needs of the electrician. Programming can be performed:

□ independently, using the buttons on the smart relay (ladder language),

on a PC using "Zelio Soft 2" software.

When using a PC, programming can be performed either in LADDER language or in function block diagram (FBD) language, see pages 12 and 13.

Backlighting of the LCD display (1) is set by either using the 6 programming buttons on the smart relay or by using "Zelio Soft 2" software (example: flashing in the event of a malfunction).

The autonomous operating time of the clock, assured by a lithium battery, is 10 years.

Data backup (preset values and current values) is provided by an EEPROM Flash memory (10 years).

Compact smart relays

Compact smart relays meet requirements for simple automation systems. The number of inputs/outputs can be:

- I2 or 20 I/O, supplied with \pm 12 V or \sim 24 V,
- 10, 12 or 20 I/O, supplied with = 24 V or \sim 100...240 V.

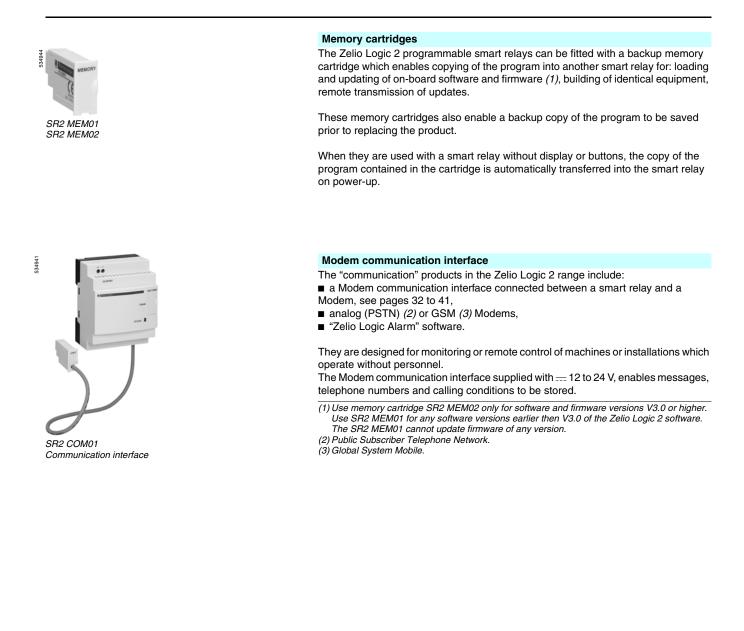
Modular smart relays and extensions

- The number of inputs/outputs for modular smart relays can be:
- 26 I/O, supplied with 12 V,
- = 10 or 26 I/O, supplied with 24 V, \sim 24 V or \sim 100 to 240 V.

To improve performance and flexibility, Zelio Logic 2 modular smart relays can be fitted with I/O extension modules with from 10 to 40 I/O:

- discrete I/O extension modules with 6, 10 or 14 I/O, supplied via the smart relay at the same voltage,
- analog I/O extension modules with 4 I/O, supplied with --- 24 V via the smart relay at the same voltage,

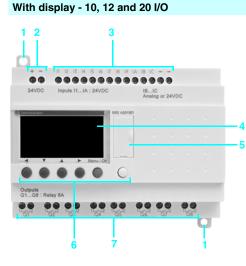
network communication module, supplied with --- 24 V via the smart relay at the same voltage.

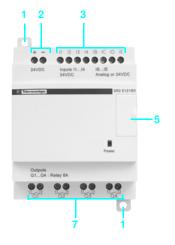

(1) LCD: Liquid Crystal Display.

litout	5110			
ges	11	to 1	3	

Presentation (continued)

Zelio[®] Logic 2 Programmable Smart Relays

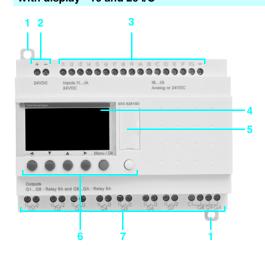

Compact and modular smart relays



Zelio[®] Logic 2 **Programmable Smart Relays**

Compact and modular smart relays

Compact smart relays



Without display - 10, 12 and 20 I/O

Compact smart relays have the following on the front face:

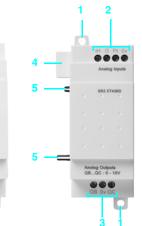
- Two retractable mounting feet.
- Two power supply terminals.
- Terminals for connection of the inputs. 3 Backlit LCD display with 4 lines of 18
- characters.
- Slot for memory cartridge or connection to a PC or communication interface.
- 6 buttons for programming and 6 parameter entry.
- Terminals for connection of the outputs.

Modular smart relays With display - 10 and 26 I/O

Modular smart relays have the following on the front panel:

- Two retractable mounting feet.
- Two power supply terminals.
- Terminals for connection of the inputs.
- Backlit LCD display with 4 lines of 18 characters.
- Slot for memory cartridge or connection to a PC or communication interface.
- 6 buttons for programming and 6 parameter entry.
- Terminals for connection of the outputs.

Discrete and analog I/O extension modules 6 discrete I/O


10 and 14 discrete I/O

Outputs QB...QE : Relay 8A 000

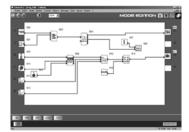
...

.....

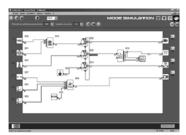
I/O extension modules have the following on the front face:

- Two retractable mounting feet.
- Terminals for connection of the inputs. 2
- Terminals for connection of the outputs. 3
- A connector for connection to the smart relay (powered by the smart relay).
- Locating pegs.

es 11 to 13



Zelio[®] Logic 2 Programmable Smart Relays


Compact and modular smart relays "Zelio Soft 2" programming software

	Catlet 2	Cathor II	8	Camert	lan D	Converses	
					- -		
" _					² 60	-	
····					ees	_	
		n					

Programming in LADDER language

Programming in FBD language

"Simulation" mode in FBD language

"Monitoring" window

"Zelio Soft 2" for PC (versions 3.1 and above)

"Zelio Soft 2" software enables:

- programming in LADDER language or in function block diagram (FBD) language, see pages 12 and 13.
- simulation, monitoring and supervision,
- uploading and downloading of programs,
- output of personalized files,
- automatic compiling of programs,
- on-line help.

Coherence tests and application languages

"Zelio Soft 2" software monitors applications by means of its coherence test function. An indicator turns red at the slightest input error. The problem can be located by simply clicking the mouse.

"Zelio Soft 2" software allows switching, at any time, to any of the 6 languages (English, French, German, Spanish, Italian, Portuguese) and editing of the application file in the selected language.

Inputting messages for display on Zelio Logic 2 programmable smart relays

"Zelio Soft 2" software allows Text function blocks to be configured, which can then be displayed on all smart relays which have a display.

Program testing

2 test modes are provided:

- "Zelio Soft 2" **simulation** mode allows a program to be tested without a Zelio Logic 2 programmable smart relay, i.e.:
- enable discrete inputs,
- □ display the status of outputs,
- □ vary the voltage of the analog inputs.
- □ enable the programming buttons,
- □ simulate the application program in real time or in accelerated time,
- □ dynamically display (in red) the various active elements of the program.

■ "Zelio Soft 2" **monitoring** mode makes it possible to test the program executed by the smart relay, i.e.:

- □ display the program "on-line",
- □ force inputs, outputs, control relays and current values of the function blocks,
- □ adjust the time,
- □ change from STOP mode to RUN mode and vice versa.

In simulation or monitoring mode, the monitoring window allows the status of the smart relay I/Os to be displayed within your application environment (diagram or image).

esentation, description:	Characteristics:	
ges 8 to 10	pages 14 to 17	

LADDER language

Zelio[®] Logic 2 Programmable Smart Relays Compact and modular smart relays "Zelio Soft 2" programming software

LADDER langua	ye	
Definition		
	ÖТ	LADDER language enables a LADDER program to be written with elementary functions, elementary function blocks and derived function blocks, as well as with contacts, coils and variables.
Text function block	Timer	The contacts, coils and variables can be annotated. Text can be placed freely within the graphic.
<u>ÔĠĨ</u>	<u>ÔĠĪ</u>	■ Control scheme input modes "Zelio input" mode enables users who have directly programmed the Zelio Logic 2
Up/down counter	Fast counter	programmable smart relay to find the same user interface, even when using the software for the first time.
.		"Free input" mode, which is more intuitive, is very user-friendly and incorporates many additional features. With LADDER programming language, two alternative types of symbol can be used :
Analog comparator	Clock	 LADDER symbols, electrical symbols.
L M □	0 dV	"Free input" mode also allows the creation of mnemonics and notes associated with each line of the program. Instant switching from one input mode to the other is possible at any time, by simply
Control relay	Counter comparator	clicking the mouse.
LCDL	0 **	Up to 120 control scheme lines can be programmed, with 5 contacts and 1 coil per program line
2-2	14. 33	Functions:
LCD backlighting	Summer/Winter time switching	16 time delay function blocks; parameters of 11 different types can be set for each of these (1/10 th second to 9999 hours),
μo	@	 16 up/down counter function blocks from 0 to 32767, 1 fast counter (1 kHz), 16 Text function blocks,
Output coil	Message	 16 analog comparator function blocks, 8 clock function blocks, each with 4 channels, 28 control relays,
		□ 8 counter comparators,
		□ automatic Summer/Winter time switching,

- □ variety of functions: coil, latching (Set/Reset), impulse relay, contactor,
- LCD screen with programmable backlighting,
- □ 28 message blocks (with communication interface, see page 32).

Functions			
Function	Electrical scheme	LADDER language	Notes
Contact	22 13 23 10 13	I or ∕ i	I corresponds to the real state of the contact connected to the input of the smart relay. i corresponds to the inverse state of the contact connected to the input of the smart relay.
Standard coil	A2	-()	The coil is energized when the contacts to which it is connected are closed.
Latch coil (Set)	A2 A1	—(S)—	The coil is energized when the contacts to which it is connected are closed. It remains tripped when the contacts re-open.
Unlatch coil (Reset)	A2 A1	—(R)—	The coil is de-energized when the contacts to which it is connected are closed. It remains inactive when the contacts re-open.

Presentation, description: ages 8 to 10

Curves: pages 18 and 19

References: pages 20 to 22

Zelio[®] Logic 2 Programmable Smart Relays Compact and modular smart relays "Zelio Soft 2" programming software

Function block diagram language (FBD)	1)					
Definition						
	FBD language allows graphical programming based on the use of predefined function blocks. This language provides the use of 24 pre-programmed functions for counting, time delay, timing, definition of switching threshold (example: temperature regulation), generation of impulses, time programming, multiplexing, display, etc.					
Pre-programmed functions						
Zelio Logic 2 programmable smart relays provide a high p	processing capacity, up to 200 function blo	cks, including 24 pre-programmed functions:				
TIMER AC	TIMER BH	TIMER BW				
		jī_jī_				
TIMER A-C Timer, Function A/C	TIMER B/H Timer. Function BH.	TIMER BW Timer. Function BW				
(ON-delay and OFF-delay)	(adjustable pulsed signal)	(pulse on rising/falling edge)				
		~~ 'a -				
≫++× TIMER Li	BISTABLE	RESET				
Pulse generator	Impulse relay function	Bistable latching - Priority assigned either to				
(ON-delay, OFF-delay)		SET or RESET function				
Dep- BOOLEAN		1234 PRESET COUNT				
	Sec. 1	PRESET COUNT				
BOOLEAN Allows logic equations to be created between connected inputs	CAM Cam programmer	CUUNT Up/down counter				
		12:29 TIME PROG				
<u>resi</u>	G(22	02/05/03				
UP DOWN COUNT	PRESET H-METER	UCTUOTUS TINE PROG				
Up/down counter with external preset	Hour counter	Time programmer, weekly and annual.				
	(hour, minute preset)					
GAIN		MUX				
		LÝMUX				
GAIN Allows conversion of an analog value by change of scale and	TRIGGER Defines an activation zone with hysteresis	Multiplexing functions on 2 analog values				
offset.	Dennes an activation zone with hysteresis	Multiplexing functions on 2 analog values				
MAX COMP IN ZONE	ADD/SUB	J MUL/DIV				
# VAL						
Imin						
Zone comparison	Add and/or subtract function	Multiply and/or divide function				
(Min. ≤ Value ≤ Max.) DISPLAY	= < COMPARE	▲ STATUS				
		A SIATUS				
BISPLAY		STATUS				
Display of digital and analog data, date, time, messages for	Comparison of 2 analog values using the	Access to smart relay status				
Human-Machine interface.	operands =, >, <, ≤, ≥.	- -				
ARCHIVE	EST SPEED COUNT	200				
<u>u</u>	SPEED	C. Se				
ARCHIVE Storage of 9 volues simultaneously	COUNT	COM Sonding of managers with communication				
Storage of 2 values simultaneously	Fast counting up to 1 kHz	Sending of messages with communication interface (see page 32).				
SFC functions (2) (GRAFCET)		······································				
	└┤ INIT STEP	Ч STEP				
*•••	<u>0</u> +	. □ →				
RESET-INIT		⇒ ∓ STEP				
Reinitializable step	Initial step	SFC step				
DIV-OR 2	CONV-OR 2	DIV-AND 2				
<u>+</u>						
Divergence to OP	CONV-OR 2	DIV-AND 2				
Divergence to OR	Convergence to OR	Divergence to AND				
Convergence to AND						
Logic functions						
AND	S OR					
₹ ĕ /-	729-	∃ o lo				
AND	OR	NAND				
AND function	OR function	NOT AND function				
The NOR	TIT XOR	-1 DO-NOT				
	# VAD	NAT				
NOR NOT OR function	XOR Exclusive OR function	NOT function				
(1) Function Block Diagram.						

(1) Function Block Diagram.(2) Sequential Function Chart.

Characteristics

Zelio[®] Logic 2 Programmable Smart Relays Compact and modular smart relays

General environment Product certifications			UL, CSA, GL (pending), C-					
Conformity with the low voltage directive	Conforming to 73/23/EEC		EN (IEC) 61131-2 (open eq					
Conformity with the EMC directive	Conforming to 89/336/EEC		EN (IEC) 61131-2 (Zone B) EN (IEC) 61000-6-2, EN (IE	EC) 61000-6-3 <i>(1)</i> and EN (IE	C) 61000-6-4			
Degree of protection	Conforming to IEC/EN 60529		IP 20					
Overvoltage category	Conforming to IEC/EN 60664-1		3					
Degree of pollution	Conforming to IEC/EN 61131-2		2					
Ambient air temperature around the device	Operation	°C (°F)	- 20 to + 55 (- 4 to + 131) + and IEC 60068-2-2	40 (+ 104) in an enclosure, c	onforming to IEC 60068-2-			
	Storage	°C (°F)	· · · ·					
Maximum relative humidity			95% without condensation	or dripping water				
Maximum operating altitude	Operation	m (ft.)	2000 (6562)					
	Transport	m (ft.)	3048 (10 000)					
Mechanical resistance	Immunity to vibration		IEC/EN 60068-2-6, test Fc					
	Immunity to mechanical shock		IEC/EN 60068-2-27, test Ea	1				
Resistance to electrostatic discharge	Immunity to electrostatic discharge		IEC/EN 61000-4-2, level 3					
Resistance to HF interference (immunity)	Immunity to electromagnetic radiated fields		IEC/EN 61000-4-3, level 3					
	Immunity to fast transients in bursts		IEC/EN 61000-4-4, level 3					
	Immunity to shock waves		IEC/EN 61000-4-5					
	Radio frequency in common mode		IEC/EN 61000-4-6, level 3					
	Voltage dips and breaks (\sim)		IEC/EN 61000-4-11					
	Immunity to damped oscillation waves		IEC/EN 61000-4-12					
Conducted and radiated emissions	Conforming to EN 55022/11 (Group 1)		Class B (1)					
Screw terminals connection capacity	Flexible cable with cable end	mm²	1 conductor: 0.25 to 2.5, cable: AWG 24 to AWG 14 2 conductors: 0.25 to 0.75, cable: AWG 24 to AWG 18					
(Tightening using	Semi-solid cable	mm ²	1 conductor: 0.2 to 2.5 cable: AWG 25 to AWG 14					
Ø 3.5 screwdriver)	Solid cable	mm²	1 conductor: 0.2 to 2.5, cab 2 conductors: 0.2 to 1.5, ca					
	Tightening torque	N.m (Ibf-in)	0.5 (4.4)					
Processing character	ristics							
Number of control scheme lines	With LADDER programming		120					
Number of function blocks	With FBD programming		Up to 200					
Cycle time		ms	10 to 50					
Response time		ms	20 minimum					
Back-up time	Day/time		10 years (lithium battery) at	25 °C (77 °F)				
(in the event of power failure)	Program and settings		10 years (EEPROM memor	y cartridge)				
Program memory checking			On each power-up					
Clock drift			12 min/year 0 to 55 °C (32 f 6 sec/month at 25 °C (77 °F	to 131 °F) F) and calibration				
Timer block accuracy			1% ± 2 cycle time					
12 V supply charac	cteristics		SR2 B121JD	SR2 B201JD	SR3 B261JD			
Primary	Nominal voltage	v	12	0112 020100	0110 020100			
Voltage limits	Including ripple	v V						
			<u></u> 10.4 to 14.4 120	200	250			
Nominal input current	Without extensions With extensions	mA mA		200	250 400			
	VVIIII EALEIISIUIIS	mA	-		100			

≤ 1 (repeated 20 times) Permissible duration ms Against reverse polarity (1) Except for the configuration SR3 BeeeBD + SR3 MBU01BD + SR3 XT43BD class A (class B: work in progress).

2.5

resentation, d ages 8 to 10

Power dissipated

Micro-breaks

Protection

Without extensions

With extensions

W

w

1.5

3

5

---- 24 V supply characteristics

Smart relay type			SR2 ●1●1BD	SR2 B122BD	SR2 ●201BD	SR2 B202BD	SR3 B101BD	SR3 B102BD	SR3 B261BD	SR3 B262BD
Primary	Nominal voltage	V	24							
Voltage limits	Including ripple	V	19.2 to 30)						
Nominal input current	Without extensions	mA	100	100 50						70
	With extensions	mA	-	-			100	160	300	180
Power dissipated	Without extensions	W	3		6	3		4	6	5
	With extensions	w	-	-			8		10	
Micro-breaks	Permissible duration	ms	≤ 1 (repeated 20 times)							
Protection			Against r	everse pola	arity					

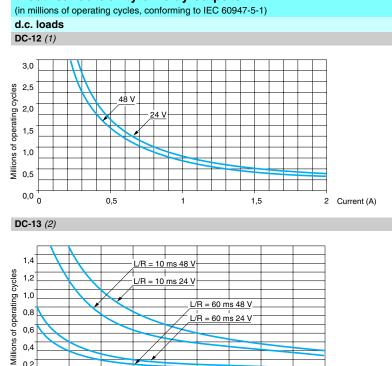
\sim 24 V supply characteristics

Smart relay type			SR2 121B	SR2 e201B	SR3 B101B	SR3 B261B	
Primary	Nominal voltage	V	24				
Voltage limits		V	20.4 to 28.8				
Nominal frequency		Hz	50-60				
Nominal input current	Without extensions	mA	145	233	160	280	
	With extensions	mA	-		280	415	
Power dissipated	Without extensions	VA	4	6	4	7.5	
	With extensions	VA	-	-		10	
Micro-breaks	Permissible duration	ms	< 10 (repeated 20 times)				
rms insulation voltage		V	1780 (50-60 Hz))			

\sim 100 to 240 V supply characteristics

Smart relay type	SR2 •101FU	SR2 e121FU	SR2 e201FU	SR3 B101FU	SR3 B261FU				
Primary	Nominal voltage	v	100 to 240	100 to 240					
Voltage limits	v	85 to 264							
Nominal input current	Without extensions	mA	80/30		100/50	80/30	100/50		
	With extensions	mA	-			80/40	80/60		
Power dissipated	Without extensions	VA	7		11	7	12		
	With extensions	VA	-	-		12	17		
Micro-breaks	Permissible duration	ms	10						
rms insulation voltage		V	1780						

Discrete ---- input characteristics (inputs I1 to IA and IH to IR)


Smart relay type				SRe eeeeJD	SRe eeeeBD			
Nominal value of inputs	Voltage Current		V	12	24			
			mA	4				
Input switching limit values	At state 1	Voltage	V	≥ 5.6	≥ 15			
		Current	mA	≥2	≥ 2.20			
	At state 0	Voltage	V	≤ 2.4	≤5			
		Current	mA	< 0.9	< 0.75			
Input impedance at state 1			kΩ	2.7	7.4			
Conforming to IEC/EN 61131-	-2			Type 1				
Sensor compatibility	3-wire			Yes PNP				
	2-wire			No				
Input type				Resistive				
Isolation	Between sup	ply and inputs		None				
	Between inp	uts		None				
Maximum counting frequency	у		kHz	1				
Protection	Reverse pola	arity protection		Control instructions not executed				

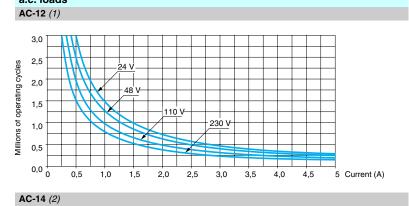
oltage	aracteristics	(inputs			
urrent					
urrent					
urrent			SRe eeeeJD		SRe eeeeBD
urrent		v	12		24
		mA	4		
t state 1	Voltage	v	≥7		≥ 15
	Current	mA	≥ 0.5		≥ 1.2
t state 0	Voltage	v	≤3		≤ 5
	Current	mA	≤ 0.2		≤ 0.5
		kΩ	14		12
			Type 1		
-wire			Yes PNP		
-wire			No		
			Resistive		
etween supp	ly and inputs		None		
etween input	ts		None		
		kHz	1		
everse polar	ity protection		Control instruction	ns not executed	
			SRe eeeeJD		SRe eeeeBD
		v	0 to10 or 0 to 12		0 to 10 or 0 to 24
		kΩ	14		12
ge		v	14.4		30
			39 mV, 4 mA		
			Common mode		
esolution			8 bits		
onversion tin	ne		Smart relay cycle	time	
recision	at 25 °C (77 °F)		±5%		
	at 55 °C (131 °F)		± 6.2 %		
epeat accurac	cy at 55 °C (131 °F)		±2%		
etween analo	og channel & supply		None		
		m	10 maximum, wit	h shielded cable (sens	sor not isolated)
everse polar	ity protection		Control instruction	ns not executed	
octeristic	S (inputs IH, IJ a	and Pt.)			
	,			0-20 mA	Pt100
	outs			IH and IJ	IJ
				0 to 20 mA	- 25 to + 125 °C (- 13 to + 257 °F)
· · ·	nce	Ω	18 k	246	-
			30 V	30 mA	-
alue of LSB			9.8 mV	20 µA	0.15 °C (32 °F)
nput type			Common mode	1.61	Pt100 probe - IEC 751 3-wire
Resolution			10 bits		
conversion tin	ne		Smart relay cycle	time	
recision	at 25 °C (77 °F)		±1%		± 1.5 °C (35 °F)
			±1%		± 1.5 °C (35 °F)
lepeat accura			< ± 1 %		< ± 0.3 °C (32 °F)
			None		
		m (ft.)		um, with shielded cab	le (sensor not isolated)
leverse polar	rity protection		. ,		-
			SRe eeeeB		SRe eeeeFU
oltage		V			100 to 240
					0.6
					0.0
	Voltage				≥ 79
					> 0.17
t state 0					≤ 40
	Surrout				350
itate 0 to 1 /5	50/60 Hz)				
	÷				
				ins not executed	
	etween supp etween input everse polar ge esolution onversion tir recision epeat accurate everse polar cteristic pplication ssignable inp put impedar laximum nor alue of LSB uput type esolution onversion tir recision epeat accurate everse polar date of LSB input type esolution onversion tir recision epeat accurate everse polar cacterist oltage urrent requency t state 1 t state 0 t state 1 to 0 (se etween supp etween input	etween supply and inputs etween inputs everse polarity protection ge esolution onversion time recision <u>at 25 °C (77 °F)</u> at 55 °C (131 °F) etween analog channel & supply everse polarity protection Icteristics (inputs IH, IJ a pplication ssignable inputs uput impedance laximum non destructive value alue of LSB uput type esolution onversion time recision <u>at 25 °C (77 °F)</u> etween analog chan. & supply everse polarity protection onversion time recision <u>at 25 °C (77 °F)</u> etween analog chan. & supply everse polarity protection racteristics oltage urrent requency t state 1 <u>Voltage</u> <u>Current</u>	attween supply and inputs KHz attween inputs KHz everse polarity protection KHz attraction KA2 ge V ge V ge V att 25 °C (77 °F) Interference att 25 °C (131 °F) Interference att 25 °C (77 °F) Interf	etween supply and inputsNoneetween inputsKHzetween inputsKHzetween inputsControl instructioneverse polarity protectionControl instructionKHz1everse polarity protectionSRe everseJDV0 to10 or 0 to 12KΩ14geV14.4geV14.4geV14.4geVesolution8 bitsonversion timeSmart relay cyclerecisionat 25 °C (77 °F)at 55 °C (131 °F)± 2 %etween analog channel & supplyNonem10 maximum, witeverse polarity protectionControl instructioncteristics (inputs IH, IJ and Pt.)pplication0 -10 Vssignable inputsIH and IJput range0 to 10 Vdcput range0 to 10 Vdcput typeCommon modeesolution10 bitsonversion timeSmart relay cyclerecisionat 25 °C (77 °F)everse polarity protectionCommon modeesolution10 bitsonversion timeSmart relay cyclerecisionat 25 °C (77 °F)everse polarity protectionCommon modestatis 1Voltageverse polarity protectionControl instructiorecisionat 25 °C (77 °F)etween analog chan. & supplyNoneMm10 (32.81) maxineverse polarity pr	etween supply and inputs None etween inputs None istee etween inputs None kHz 1 everse polarity protection Control instructions not executed KD2 14 ge V ge V 14.4 39 mV.4 mA Common mode esolution 8 bits onversion time Smart relay cycle time recision at 25 °C (77 °F) ± 6.2 % at 55 °C (131 °F) ± 2.8 % etween analog channel & supply None m 10 maximum, with shielded cable (sems control instructions not executed Citeristics (inputs IH, IJ and Pt.) Polytand IJ pplication 0 -10 V 0-20 mA signable inputs IH and IJ put impedance Ω 18 k ausimum non destructive value 30 V 30 mA aute of LSB 9.8 mV 20 µA put type Common mode control instructions not executed recision at 25 °C (77 °F) ± 1 % esolution 0 to 10 Vdc 0 to 20 m

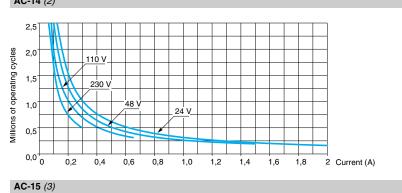
16	pages 11 to 15	Telemecanique	pages 20 to 22	pages 20 to 21	
Presentation, description:	Functions:	Curves:	References:	Dimensions, schemes:	
pages 8 to 10	pages 11 to 13	pages 18 and 19	pages 20 to 22	pages 23 to 27	

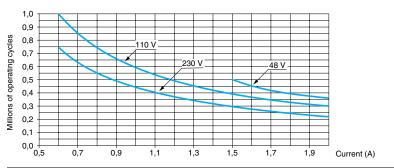
Smart relay type				SR2 eee/ SR3 B101ee/	SR3 B261 00	SR3 XT14100
				SR3 XT61ee/ SR3 XT101ee		
Operating limit values			v	= 5 to 150 \sim 24 to 250		
Contact type				N/O		
Thermal current			A	8	8 outputs: 8 A	4 outputs: 8 A
Electrical durability	Utilization	DC-12	٧	24	2 outputs: 5 A	2 outputs: 5 A
or 500 000 operating cycles	category		A	1.5		
		DC-13	V	24 (L/R = 10 ms)		
			Α	0.6		
		AC-12	v	230		
			Α	1.5		
		AC-15	v	230		
			Α	0.9		
Minimum switching capacity	At minimum vo	oltage of 12 V	mA	10		
ow power switching				12 V - 10 mA		
eliability of contact						
Maximum operating rate	No-load		Hz	10		
	At le (operatio	,	Hz	0.1		
Mechanical life		perating cycles		10		
Rated impulse withstand voltage (Uimp)	Conforming to and IEC/EN 60	IEC/EN 60947-1 0664-1	kV	4		
Response time	Trip		ms	10		
-	Reset		ms	5		
Built-in protection	Against short-	oirouite		None		
	Against short t	LIICUIIS		None		
	Against overvo			None		
	Against overvo and overload	oltage				
Transistor output ch	Against overvo and overload	oltage		None		
Transistor output ch Smart relay type	Against overvo and overload	oltage	V	None SRe Bee2BD		
Transistor output ch Smart relay type Operating limit values	Against overvo and overload naracterist	oltage	V	None SRe Bee2BD 19.2 to 30		
Transistor output ch Smart relay type	Against overvo and overload naracterist	pltage ICS ge	۷	None SRe Bee2BD 19.2 to 30 24		
Transistor output ch Smart relay type Operating limit values	Against overvo and overload naracterist	pltage iCS ge nt	V A	None SRe Bee2BD 19.2 to 30 24 0.5		
Transistor output ch Smart relay type Operating limit values Load	Against overvo and overload naracterist Nominal voltag Nominal currer Maximum curr	pltage iCS ge nt	V A A	None SRe Bee2BD 19.2 to 30 == 24 0.5 0.625 at 30 V		
Transistor output ch Smart relay type Operating limit values Load	Against overvo and overload naracteristi Nominal voltag Nominal currer Maximum curr At state 1	pltage iCS ge nt	V A A V	None SRe Bee2BD 19.2 to 30 == 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A		
Transistor output ch Smart relay type Operating limit values Load	Against overvo and overload Daracterist Nominal voltag Nominal currer Maximum curr At state 1 Trip	pltage iCS ge nt	V A A V ms	None SRe Bee2BD 19.2 to 30 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A ≤ 1		
Transistor output ch Smart relay type Operating limit values Load Drop-out voltage Response time	Against overvo and overload naracteristi Nominal voltag Nominal currer Maximum curr At state 1 Trip Reset	bltage iCS ge nt ent	V A A V	None SRe Bee2BD 19.2 to 30 == 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A		
Transistor output ch Smart relay type Operating limit values Load	Against overvo and overload aracteristi Nominal voltag Nominal curre Maximum curr At state 1 Trip Reset Against overloa	bitage iCS ge nt ent d and short-circuits	V A A V ms	None SR● B●●2BD 19.2 to 30 == 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A ≤ 1 ≤ 1 Yes		
Transistor output ch Smart relay type Operating limit values Load Drop-out voltage Response time	Against overvo and overload aracteristi Nominal voltag Nominal curre Maximum curr At state 1 Trip Reset Against overloa Against overloa	bitage iCS ge nt ent d and short-circuits bitage (1)	V A A V ms	None SR● B●●2BD 19.2 to 30 == 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A ≤ 1 ≤ 1		
Transistor output ch Smart relay type Operating limit values Load Drop-out voltage Response time	Against overvo and overload aracteristi Nominal voltag Nominal curre Maximum curr At state 1 Trip Reset Against overloa Against overloa	bitage iCS ge nt ent ent id and short-circuits bitage (1) ons of power supply	V A A V ms ms	None SR● B●●2BD 19.2 to 30 == 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A ≤ 1 ≤ 1 Yes Yes	ween the smart relay o	putput and the load.
Transistor output ch Smart relay type Operating limit values Load Drop-out voltage Response time	Against overvo and overload Daracterist Nominal voltag Nominal curre Maximum curr At state 1 Trip Reset Against overloa Against overvo Against inversio	bitage iCS ge nt ent ent id and short-circuits bitage (1) bits of power supply	V A A V ms ms	None SR● B●●2BD 19.2 to 30 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A ≤ 1 ≤ 1 Yes Yes Yes	ween the smart relay o	putput and the load.
Transistor output chara	Against overvo and overload Daracterist Nominal voltag Nominal curre Maximum curr At state 1 Trip Reset Against overloa Against overvo Against inversio	bitage iCS ge nt ent id and short-circuits bitage (1) ons of power supply (QB, QC)	V A A V ms ms (1) If ther	None SR● B●●2BD 19.2 to 30 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A ≤ 1 ≤ 1 Yes Yes Yes	ween the smart relay o	putput and the load.
Transistor output chara	Against overvo and overload Daracteristi Nominal voltag Nominal currer Maximum currer Maximum currer At state 1 Trip Reset Against overloa Against overloa Against overloa Against overloa	bitage iCS ge nt ent id and short-circuits bitage (1) ons of power supply (QB, QC)	V A A V ms ms (1) If ther	None SRe Bee2BD 19.2 to 30 == 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A ≤ 1 ≤ 1 Yes Yes Yes Yes e is no volt-free contact bet	ween the smart relay o	putput and the load.
Transistor output chara	Against overvo and overload Daracteristi Nominal voltag Nominal currer Maximum currer Maximum currer At state 1 Trip Reset Against overloa Against overloa Against overloa Against overloa Against inversio	bitage iCS ge nt ent id and short-circuits bitage (1) ons of power supply (QB, QC)	V A A V ms ms (1) If ther	None SR● B●●2BD 19.2 to 30 == 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A ≤ 1 ≤ 1 Yes Yes Yes Yes e is no volt-free contact bet ~ 0 to 10 Resistive 10	ween the smart relay o	putput and the load.
Transistor output ch Smart relay type Operating limit values Load Drop-out voltage Response time Built-in protection Analog output chara Analog outputs	Against overvo and overload Daracteristi Nominal voltag Nominal currer Maximum curr At state 1 Trip Reset Against overloa Against overloa Against overloa Against overloa Against inversio	bitage iCS ge nt ent id and short-circuits bitage (1) ons of power supply (QB, QC)	V A A V ms ms (1) If ther	None SR● B●●2BD 19.2 to 30 == 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A ≤ 1 ≤ 1 Yes Yes Yes Yes e is no volt-free contact bet ~ 0 to 10 Resistive	ween the smart relay o	putput and the load.
Transistor output chara	Against overvo and overload Daracteristi Nominal voltag Nominal currer Maximum curr At state 1 Trip Reset Against overloa Against overloa Against overloa Against overloa Against overloa Output range Type of load Maximum load	bitage iCS ge nt ent id and short-circuits bitage (1) ons of power supply (QB, QC)	V A A V ms ms (1) If ther V V	None SRe Bee2BD 19.2 to 30 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A ≤ 1 ≤ 1 Yes Yes ves ot to 10 Resistive 10 10 bits	ween the smart relay o	putput and the load.
Transistor output ch Smart relay type Operating limit values Load Drop-out voltage Response time Built-in protection Analog output chara Analog outputs	Against overvo and overload Daracteristi Nominal voltag Nominal curree Maximum curre At state 1 Trip Reset Against overloa Against overloa A	bitage iCS ge nt ent ent id and short-circuits bitage (1) bitage (1) bitage (2) (QB, QC) e	V A A V ms ms (1) If ther V V	None SRe Bee2BD 19.2 to 30 == 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A ≤ 1 ≤ 1 Yes Yes Yes ot to 10 Resistive 10 10 bits Smart relay cycle time		putput and the load.
Transistor output ch Smart relay type Operating limit values Load Drop-out voltage Response time Built-in protection Analog output chara Analog outputs	Against overvo and overload Daracteristi Nominal voltag Nominal curree Maximum curre At state 1 Trip Reset Against overloa Against overloa A	bitage iCS ge nt ent ent id and short-circuits bitage (1) bins of power supply (QB, QC) (QB, QC) e at 25 °C (77 °F)	V A A V ms ms (1) If ther V v mA mV	None SRe Bee2BD 19.2 to 30 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A ≤ 1 ≤ 1 ≤ 1 ≤ s Yes Yes e is no volt-free contact bet ~ 0 to 10 Resistive 10 10 10 bits Smart relay cycle time ± 1% of the full scale valu	e	putput and the load.
Transistor output ch Smart relay type Operating limit values Load Drop-out voltage Response time Built-in protection Analog output chara Analog outputs	Against overvo and overload Daracteristi Nominal voltag Nominal curre Maximum curr At state 1 Trip Reset Against overloa Against overloa Against overloa Against overloa Against overloa Against inversio Cotteristics Output range Type of load Maximum load Value of LSB Resolution Conversion tim Precision	e at 25 °C (77 °F) at 25 °C (131 °F)	V A A V ms ms (1) If ther V V mA mV	None SRe Bee2BD 19.2 to 30 == 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A ≤ 1 ≤ 1 Yes Yes Yes ot to 10 Resistive 10 10 bits Smart relay cycle time	e	putput and the load.
Transistor output ch Smart relay type Operating limit values Load Drop-out voltage Response time Built-in protection Analog output chara Analog outputs	Against overvo and overload Daracteristi Nominal voltag Nominal curree Maximum curre At state 1 Trip Reset Against overloa Against overloa A	e at 25 °C (77 °F) at 55 °C (131 °F) cy at 55 °C (131 °F)	V A A V ms ms (1) If ther V V mA mV	None SRe Bee2BD 19.2 to 30 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A ≤ 1 ≤ 1 ≤ 1 ≤ s Yes Yes ves 0 to 10 Resistive 10 10 bits Smart relay cycle time ± 1% of the full scale valu ± 1%	e	putput and the load.
Transistor output ch Smart relay type Operating limit values Load Drop-out voltage Response time Built-in protection Analog output chara Analog outputs	Against overvo and overload Daracteristi Nominal voltag Nominal currer Maximum curr At state 1 Trip Reset Against overloa Against o	e at 25 °C (77 °F) at 55 °C (131 °F) cy at 55 °C (131 °F)	V A A V ms ms (1) If ther V V mA mV	None SRe Bee2BD 19.2 to 30 == 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A ≤ 1 ≤ 1 ≤ 1 Yes Yes ves 0 to 10 Resistive 10 10 10 bits Smart relay cycle time ± 1% of the full scale valu ± 1% of the full scale valu	e	putput and the load.
Transistor output ch Smart relay type Operating limit values Load Drop-out voltage Response time Built-in protection Analog output chara Analog outputs	Against overvo and overload Daracteristi Nominal voltag Nominal curree Maximum curre At state 1 Trip Reset Against overloa Against overloa A	e at 25 °C (77 °F) at 55 °C (131 °F) cy at 55 °C (131 °F)	V A A V ms ms (1) If ther V V mA mV	None SRe Bee2BD 19.2 to 30 24 0.5 0.625 at 30 V ≤ 2 for I = 0.5 A ≤ 1 ≤ 1 ≤ 1 ≤ s Yes Yes ves 0 to 10 Resistive 10 10 bits Smart relay cycle time ± 1% of the full scale valu ± 1%	e e	putput and the load.

Electrical durability of relay outputs

0,2 0,0⁰,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 Current (A) 1 (1) DC-12: switching resistive loads and photo-coupler isolated solid-state loads, $L/R \le 1$ ms. (2) DC-13: switching electromagnets, $L/R \le 2 x$ (Ue x le) in ms, Ue: rated operational voltage,


le: rated operational current (with a protection diode on the load, DC-12 curves must be used with a coefficient of 0.9 applied to the number in millions of operating cycles).


,	description.	
n		
υ		L


0,6 0,4

Electrical durability of relay outputs (continued)

(in millions of operating cycles, conforming to IEC 60947-5-1) a.c. loads

AC-12: switching resistive loads and photo-coupler isolated solid-state loads, cos ≥ 0.9.
 AC-14: switching small electromagnetic loads ≤ 72 VA, make: cos = 0.3, break: cos = 0.3.
 AC-15: switching electromagnetic loads > 72 VA, make: cos = 0.7, break: cos = 0.4.

Presentation, description:	Functions:	Characteristics:	References:	Dimensions, schemes:
pages 8 to 10	pages 11 to 13	pages 14 to 17	pages 20 to 22	pages 23 to 27

References

Zelio[®] Logic 2 Programmable Smart Relays Compact smart relays

SR2 A201BD

SR2 E121BD

SR2 PACKeee

Com	pact si	mart relay	s with	display			
Numbe of I/O	er Discrete inputs	e Including 0-10 V analo inputs	Relay g outputs	Transistor outputs	Clock	Reference	Weight
Suppl	y <u></u> 12 \	1					kg
30ppi 12		4	4	0	Yes	6D2 D121 ID	0.050
	8	6	4 8	0		SR2 B121JD SR2 B201JD	0.250
20	12	0	8	0	Yes	SR2 B201JD	0.380
Suppl	y <u></u> 24 \	/					
10	6	0	4	0	No	SR2 A101BD (1)	0.250
12	8	4	4	0	Yes	SR2 B121BD	0.250
	8	4	0	4	Yes	SR2 B122BD	0.220
20	12	2	8	0	No	SR2 A201BD (1)	0.380
	12	6	8	0	Yes	SR2 B201BD	0.380
	12	6	0	8	Yes	SR2 B202BD	0.280
Suppl	y \sim 24 V	v					
12	8	0	4	0	Yes	SR2 B121B	0.250
20	0 12	0	8	0	Yes	SR2 B201B	0.250
20	12	0	0	0	Tes	3h2 02010	0.300
	y \sim 100	to 240 V					
0	6	0	4	0	No	SR2 A101FU (1)	0.250
12	8	0	4	0	Yes	SR2 B121FU	0.250
20	12	0	8	0	No	SR2 A201FU (1)	0.380
	12	0	8	0	Yes	SR2 B201FU	0.380
Com	pact s	mart relay	vs with	out disp	lav		
	-	Including	Relay	Transistor	-	Reference	Weight
of I/O	inputs	0-10 V analog inputs		outputs	CIOCK	nelerence	-
Suppl	y <u></u> 24 \	-					kg
10	6	0	4	0	No	SR2 D101BD (1)	0.220
12	8	4	4	0	Yes	SR2 E121BD	0.220
20	12	2	8	0	No	SR2 D201BD (1)	0.350
	12	6	8	0	Yes	SR2 E201BD	0.350
C							
	$y \sim 24$						
12	8	0	4	0	Yes	SR2 E121B	0.220
20	12	0	8	0	Yes	SR2 E201B	0.350
Suppl	y \sim 100	to 240 V					
0	6	0	4	0	No	SR2 D101FU (1)	0.220
12	8	0	4	0	Yes	SR2 E121FU	0.220
20	12	0	8	0	No	SR2 D201FU (1)	0.350
	12	0	8	0	Yes	SR2 E201FU	0.350
Com	nact "d	discovery	" nack	e.			
	er Pack co	-	pack			Reference	Weight
of I/O							kg
	y <u></u> 24 \						_
12	a conne	B121BD com ecting cable an e supplied on (d "Zelio So			SR2 PACKBD	0.700
20	An SR2 a conne	B201BD com cting cable an e supplied on (pact smar d "Zelio So	t relay with d oft 2" prograr	isplay, nming	SR2 PACK2BD	0.850
Suppl		to 240 V					
12	An SR2 a conne	B121FU comp cting cable an e supplied on (d "Zelio So			SR2 PACKFU	0.700
	Souwalt	- Subblied off (

SR2 PACK2FU 20 An SR2 B201FU compact smart relay with display, 0.850 a connecting cable and "Zelio Soft 2" programming software supplied on CD-Rom.

Curves: pages 18 and 19

(1) Programming on smart relay in LADDER language only.

Presentation, description:	Functions:
pages 8 to 10	pages 11 to 13

Characteristics pages 14 to 17

Dimensions, schemes: pages 23 to 27

20

Telemecanique

References

Zelio[®] Logic 2 Programmable Smart Relays Modular smart relays

SR3 B101BD

SR3 XT141BD

SR3 XT43BD

Modu	lar sm	nart relay	s with c	lisplay			
		Including 0-10 V analog		Transistor	Clock	Reference	Weight
		inputs					kg
	/ <u></u> 12 \	/					
26	16	6	10	0	Yes	SR3 B261JD (1)	0.400
	/ <u></u> 24 \			_			
10	6	4	4	0	Yes	SR3 B101BD	0.250
26	6 16	6	0	4 0	Yes Yes	SR3 B102BD SR3 B261BD	0.220
20	16	6	0	10	Yes	SR3 B262BD	0.400
Supply	~ 24 \		Ū			0.10 220222	0.000
10	6	0	4	0	Yes	SR3 B101B	0.250
26	16	0	10 <i>(2)</i>	0	Yes	SR3 B261B	0.400
Supply	~ 100	-240 V					
10	6	0	4	0	Yes	SR3 B101FU	0.250
26	16	0	10 <i>(2)</i>	0	Yes	SR3 B261FU	0.400
Discr	ete I/C	extensio	on mod	ules (3)			
Number of I/O	Discrete	e inputs	Relay ou	Itputs		Reference	Weight kg
Supply	/ 12 \	/ (for smart	relay SR	3 B261JD))		
6	4		2			SR3 XT61JD	0.125
10	6		4			SR3 XT101JD	0.200
14	8		6			SR3 XT141JD	0.220
		/ (for smart	•	R3 BeeeE	BD)		
6	4		2			SR3 XT61BD	0.125
10	6		4			SR3 XT101BD	0.200
14 Supply	8	/ (for smart	6 rolovo S) \	SR3 XT141BD	0.220
Suppiy 6	4	(IOF SHIAL)	SR3 XT61B	0.125
0 10	6		2			SR3 XT101B	0.125
14	8		6			SR3 XT141B	0.220
		-240 V (for s	smart rela	ays SR3 E	BeeeFU)		
6	4		2			SR3 XT61FU	0.125
10	6		4			SR3 XT101FU	0.200
14	8		6			SR3 XT141FU	0.220
Analo	og I/O	extensio	n modu	les			
Supply	/ 24 \	/					
Number of I/O	· Numbe of inpu		Including 0 - 20 mA	Including Pt100	Output 0 - 10 V	Reference	Weight kg
4	2 (4)	2 max	2 max	1 max	2	SR3 XT43BD (1) (5)	0.110
Netwo	ork co	mmunica	ation me	odule (3) (6)		
For use on			Supply voltage			Reference	Weight kg
Modbus®			<u> </u>			See page 31	0.300
Modu	lar "d	iscovery'	' packs				
Number of I/O	Pack co	ontents				Reference	Weight kg
	/ <u></u> 24 \						
10	cable ar	B101BD mod d "Zelio Soft 2 I on CD-ROM	2" programi		0	SR3 PACKBD	0.700
26	supplied on CD-ROM. An SR3 B261BD modular smart relay, a connecting cable and "Zelio Soft 2" programming software supplied on CD-ROM. SR3 PACK2BD 0.850						
Supply		to 240 V					
10	cable ar	B101FU mod ad "Zelio Soft : I on CD-Rom.	2" program			SR3 PACKFU	0.700
26	An SR3 B261FU modular smart relay, a connecting SR3 PACK2FU 0.850 cable and "Zelio Soft 2" programming software supplied on CD-Rom.						
(2) Includ	nly be us ling 8 out	ed with "Zelio puts at maxim	Soft 2" sof	of 8 A and	2 outputs	at maximum current o s is via the modular sn	

(2) including 8 outputs at maximum current of 8 A and 2 outputs at maximum current of 5 A.
(3) Power supply to the I/O extension and communication modules is via the modular smart relay.
(4) See page 26.
(5) Can only be used in FBD language.
(6) See pages 28 to 31.

Note : The smart relay and its associated extensions must have an identical voltage.

References

Zelio[®] Logic 2 **Programmable Smart Relays**

Compact and modular smart relays Separate components

for the second s	
SR2 USB01	
SR2 MEMO1 SR2 MEMO2	
Image: wide wide wide wide wide wide wide wide	

"Zelio Soft 2" soft	ware for PC		
Description	Application	Reference	Weight kg
Programming software "Zelio Soft 2", multilingual	For PC, supplied on CD-ROM (1) compatible with Microsoft [®] Windows 98, NT, 2000, XP and ME.	, SR2 SFT01	0.200
Connecting cable	Between the PC (SUB-D, 9-pin connector) and the smart relay, length: 3 m (9.8 ft.)	SR2 CBL01	0.150
	Between the PC (USB connector) a the smart relay, length: 3 m (9.8 ft.		0.100
Interface	For USB port (to be used with cable SR2 CBL01), length: 1.8 m (5.9 ft		0.350
Memory cartridge	S (2)		
Description	Application	Reference	Weight kg
EEPROM memory cartridge	For software incorporated in the smart relay version ≤ 2.4 (no firmware of any version)	SR2 MEM01	0.010
	For firmware (software incorporated in the smart relay) version ≥ 3.0	SR2 MEM02	0.010

Modem communication interface (3)

Description	Supply	Reference	Weight kg
Modem communication interface	12 to 24 V	See page 38	
Power supplies			
Input voltage	Nominal output voltage	Reference	Weight kg
\sim 100 to 240 V (47 to 63 Hz)	12 V or 24 V	See page 45	-

Mounting accessories (4)

Mounting				
Description	Mounting capacity	Application	Reference	Weight kg
Dust and damp-proof enclosure with split blanking plate arrangement, fitted with IP 55 dust and damp-proof window with hinged flap.	- 1 or 2 SR2 modules with 10 or 12 I/O, or - 1 SR2 module with 20 I/O, or - 1 SR3 module with 10 I/O + 1 I/O extension module (6, 10 or 14 I/O), or - 1 SR3 module with 26 I/O + 1 I/O extension module (6 I/O).	For mounting through a door	14210	0.350
Mounting bracket and symmetrical mounting rail	-	For mounting enclosure 14210 through a door panel	14211	0.210
Document	ation			
Description	Application	Language	Reference	Weight kg
User's manual	For direct programming	English	SR2 MAN01EN	0.100
	on the smart relay	French	SR2 MAN01FR	0.100
		German	SR2 MAN01DE	0.100
		Spanish	SR2 MAN01ES	0.100

Portuguese SR2 MAN01P0 (1) CD-ROM comprising "Zelio Soft 2" software, an application library, a self-training manual, installation instructions and a user's manual.

Spanish Italian

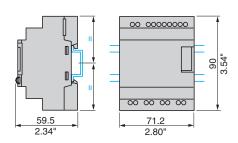
(2) Program loading using memory cartridge SR2 MEM02 is incompatible with Modem communication interface SR2 COM01.
(3) See pages 32 to 41.
(4) Products marketed under the Merlin Gerin^{Tu} brand.

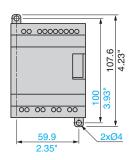
Characteristics pages 14 to 17

Curves: pages 18 and 19

SR2 MAN01IT

0.100

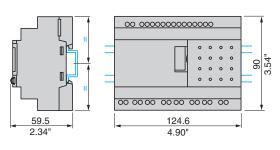

0.100

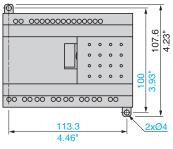

Dimensions, mounting

Zelio[®] Logic 2 Programmable Smart Relays Compact and modular smart relays

Compact and modular smart relays

SRe e10eee (10 I/O), SR2 e12eee (12 I/O) Mounting on 35 mm ___ rail

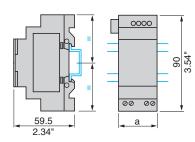


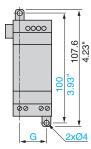


Screw mounting (retractable lugs)

Dual Dimensions mm inches

SR2 e20eee (20 I/O), SR3 B26eee (26 I/O) Mounting on 35 mm T_T rail

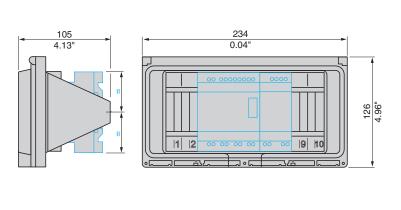


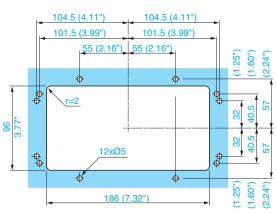


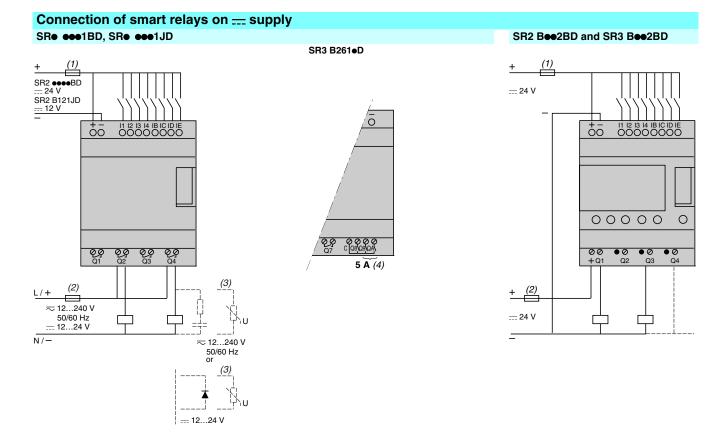
Screw mounting (retractable lugs)

I/O extension modules

SR3 XT43BD (4 I/O), SR3 XT61ee (6 I/O), SR3 XT101ee and SR3 XT141ee (10 and 14 I/O) Mounting on 35 mm -rail Screw mounting (retractable lugs)

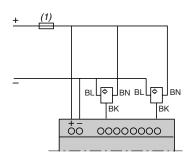

SR3	а	
XT43BD	35.5 (1.39")	25 (0.98")
XT61ee	35.5 (1.39")	25 (0.98")
XT101ee	72 (2.83")	60 (2.36")
XT141ee	72 (2.83")	60 (2.36")


Enclosure + mounting bracket 14210 + 14211


Presentation, operation, operatio

Cut-out

Curves: pages 18 and 19



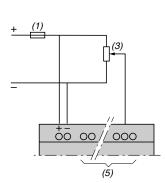
(1) 1 A quick-blow fuse or circuit-breaker.

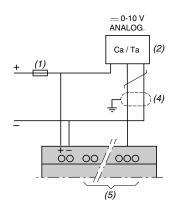
(2) Fuse or circuit-breaker.

(3) Inductive load.

(4) Q9 and QA: 5 A. Discrete input used for 3-wire sensors

(1) 1 A quick-blow fuse or circuit-breaker.


_						
Presenta pages 8	ation, description: to 10	Functions: pages 11 to 13	Characteristics: pages 14 to 17	Curves: pages 18 and 19	References: pages 20 to 22	
24			Telemecanique			

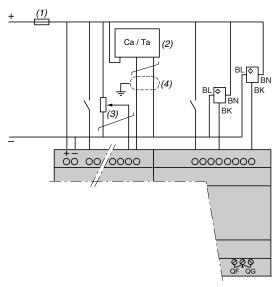

Zelio[®] Logic 2 Programmable Smart Relays

Compact and modular smart relays

Connection of smart relays on ---- supply (continued)

Analog inputs

(1) 1 A quick-blow fuse or circuit-breaker.


(2) Ca: Analog sensor / Ta: Analog transmitter.

(3) Recommended values: 2.2 k Ω / 0.5 W (10 k Ω max.).

(4) Shielded cables, maximum length 10 m (32.81 ft.). (5) Analog inputs according to smart relay, see table below:

(5) Analog inputs according to small relay, see table below.				
Smart relays	Analog inputs			
SR2 •12••D	IB to IE			
SR2 A201BD	IB and IC			
SR2 D201BD	IB and IC			
SR2 B2000D	IB to IG			
SR2 E201BD	IB to IG			
SR3 B10eBD	IB to IE			
SR3 B2600D	IB to IG			

Connection of smart relays on ---- supply, with discrete I/O extension modules SR3 BeeeJD + SR3 XTeeeJD, SR3 BeeeBD + SR3 XTeeeBD

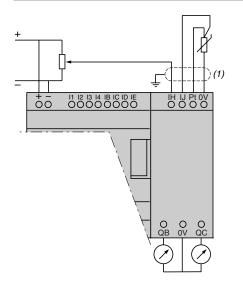
Note: QF and QG: 5 A for SR3 XT14100

(1) 1 A quick-blow fuse or circuit-breaker.

(2) Ca: Analog sensor / Ta: Analog transmitter.

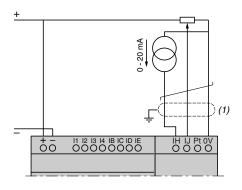
(3) Recommended values: 2.2 k Ω / 0.5 W (10 k Ω max.).

(4) Shielded cables, maximum length 10 m (32.81 ft.).


Presentation, description: Functions:	Characteristics:	Curves:	References:
pages 8 to 10 pages 11 to 13	pages 14 to 17	pages 18 and 19	pages 20 to 22

Connection of smart relays on --- supply, with analog I/O extension module

SR3 BeeeBD + SR3 XT43BD

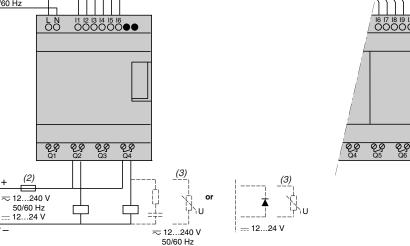

Connection alternatives						
0 - 10 V	0 - 20 mA	Pt100				
2	0	0				
1	1	0				
0	2	0				
1	0	1				
0	1	1				

Application example with 1 x 0 - 10 V input and 1 x Pt100 input

(1) Shielded cables, maximum length 10 m (32.81 ft.).

Application example with 1 x 0 - 20 mA input and 1 x 0 - 10 V input

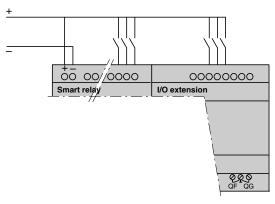
⁽¹⁾ Shielded cables, maximum length 10 m (32.81 ft.).


Presentation, description pages 8 to 10	n: Functions:	Characteristics:	Curves:	References:
	pages 11 to 13	pages 14 to 17	pages 18 and 19	pages 20 to 22
26		Telemecanique		

ō

Q9 Q7

5 A (4)



(1) 1 A quick-blow fuse or circuit-breaker. (2) Fuse or circuit-breaker. (3) Inductive load. (4) Q9 and QA: 5 A. With discrete I/O extension module SR3 BeeeB + SR3 XTeeeB, SR3 BeeeFU + SR3 XTeeeFU

(2)

L/+

N/-

Note: QF and QG: 5 A for SR3 XT141ee

Presentation, description: pages 8 to 10	Functions: pages 11 to 13	Characteristics: pages 14 to 17	Curves: pages 18 and 19	References: pages 20 to 22

Presentation

Zelio[®] Logic 2 Programmable Smart Relays Modbus[®] network slave communication module

SR3 MBU01BD

Combination of smart relays with communication and I/O extension modules

Modular smart relay (10 or 26 I/O) Modbus network slave communication module

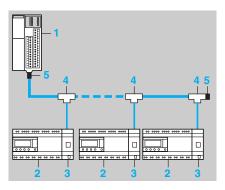
Presentation

The Modbus protocol is of the master/slave type.

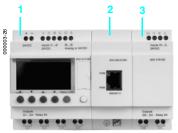
- Two exchange methods are possible:
- request/reply: the request from the master is addressed to a specific slave. The master waits for the reply to be returned by the slave polled,
- distribution: the master distributes a request to all the slave stations on the bus. These stations execute the instruction without sending a reply.

Zelio Logic modular smart relays are connected to the Modbus network via the Modbus network slave communication module. This module is a slave that is not electrically isolated.

The Modbus network slave communication module must be connected to an SR3 BeeeBD modular smart relay, with a - 24 V supply only (no other voltages are available).


Configuration

The Modbus network slave communication module can be configured:


- independently, using the buttons on the smart relay,
- on a PC, using "Zelio Soft 2" software, see page 14102/16.

When using a PC, programming can be performed either in LADDER language or in function block diagram (FBD) language, see pages 12 and 13.

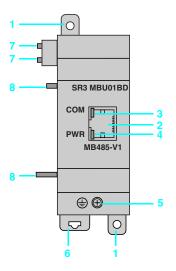
Connection example

- Modbus Master programmable controller
- (for example Twido® PLC). Zelio Logic 2 programmable
- smart relay. Modbus network slave
- communication module.
- T-junction.
- Line end adaptors.

- Modular smart relay (10 or 26 I/O) Network communication module
- I/O extension module: discrete (6, 10 or
- 14 I/O) or analog (4 I/O)

▲ The order shown above must be observed when using a Modbus network slave communication module and a discrete or analog I/O extension module. An I/O extension module cannot be fitted before the Modbus network slave communication module.

Function description


- The Modbus network slave communication module is connected to a 2-wire or 4-wire Modbus network.
- The maximum length of the network is 1000 m (3281 ft.) 9600 bauds max., AWG 26
- A maximum of 32 slaves can be connected to the Modbus network, or a maximum of 247 slaves with repeaters.
- Line end adaptors must be fitted to both ends of the line (1 nF/10 V, 120 Ω/0.25 W in series).
- The line must be polarized (470 Ω /0.25 W resistors) (1).
- The connection cable and its RJ45 male connectors must be shielded.
- The "COMMON" signal must be connected directly to the protective ground at one point on the bus.

(1) The polarization resistors must be managed by the master.

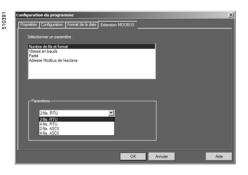
Description, characteristics

Zelio[®] Logic 2 Programmable Smart Relays Modbus[®] network slave communication module

Description

The Modbus network slave communication module SR3 MBU01BD comprises:

- 1
- Two retractable mounting feet. A Modbus network connection (RJ45 shielded female connector). 2
- A communication LED (COM). 3
- 4 A "Power on" LED (PWR).
- 5 A screw terminal block for the protective ground connection.
- A spring clip for mounting on a 35 mm (1.38")mounting rail. 6
- 7 Two locating pegs.
- 8 Two locating pegs for clip-on mounting.


Environment characteristics

Environment cha	racienslics		
Product certifications			UL, CSA, GL (pending), C-TICK
Conformity with the low voltage directive	Conforming to 73/23/EEC		EN (IEC) 61131-2 (open equipment)
Conformity with the EMC directive	Conforming to 89/336/EEC		EN (IEC) 61131-2 (Zone B) EN (IEC) 61000-6-2, EN (IEC) 61000-6-3 and EN (IEC) 61000-6-4
Degree of protection	Conforming to IEC/EN 60529		IP 20
Overvoltage category	Conforming to IEC/EN 60664-1		3
Degree of pollution	Conforming to IEC/EN 61131-2		2
Ambient air temperature around the device	Operation	°C (°F)	- 20 to + 55 (-4 to +131) + 40 (+104) in an enclosure, conforming to IEC 60068-2-1 and IEC 60068-2-2
	Storage	°C (°F)	- 40 to + 70 (-40 to 158)
Maximum relative humidi	ty		95% without condensation or dripping water
Maximum	Operation	m (ft.)	2000 (6562)
operating altitude	Transport	m (ft.)	3048 (10 000)
Mechanical resistance	Immunity to vibration		IEC/EN 60068-2-6, test Fc
	Immunity to mechanical shock		IEC/EN 60068-2-27, test Ea
Resistance to electrostatic discharge	Immunity to electrostatic discharge		IEC/EN 61000-4-2, level 3
Resistance to HF interference	Immunity to electromagnetic radiated fields		IEC/EN 61000-4-3, level 3
(immunity)	Immunity to fast transients in bursts		IEC/EN 61000-4-4, level 3
	Immunity to shock waves		IEC/EN 61000-4-5
	Radio frequency in common mode		IEC/EN 61000-4-6, level 3
	Voltage dips and breaks (\sim)		IEC/EN 61000-4-11
	Immunity to damped oscillation waves		IEC/EN 61000-4-12
Conducted and radiated emissions	Conforming to EN 55022/11 (Group 1)		Class B

Dimensio page 31

Zelio[®] Logic 2 Programmable Smart Relays Modbus[®] network slave communication module

Parameter entry

Software workshop parameter entry window

Parameters can be entered either using "Zelio Soft 2" software or directly using the buttons on the Zelio Logic 2 programmable smart relay.

When the "RUN" instruction is given, the Zelio Logic 2 programmable smart relay initializes the Modbus network slave communication module in a configuration previously defined in the basic program.

The Modbus network slave communication module has 4 parameters:

- number of UART wires and format of the frames on the Modbus network,
- transmission speed,
- parity,

network address of the Modbus module.

The default parameter settings are as follows: 2-wire, RTU, 19 200 bauds, even parity, address #1.

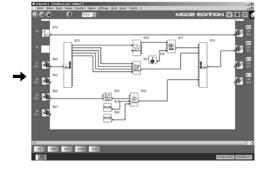
Parameter entry	Options
Number of wires	2 or 4
Frame format	RTU or ASCII
Transmission speed in bauds	1200, 2400, 4800, 9600, 19 200, 28 800, 38 400, 57 600
Parity	None, even, odd
Network address	1 to 247

Addressing of Modbus exchanges

LADDER programming (1)

In LADDER mode, the 4 data words (16 bits) to be exchanged cannot be accessed by the application. Transfers with the master are implicit and are effected in a way that is totally transparent.

Modbus exchanges	Code	Number of words
Image of smart relay I/O	Read 03	4
⇒	Read/Write 16, 06 or 03	4
 ⇒	Read 03	1


Function block diagram (FBD) programming (2)

In FBD mode, the 4 input data words (16 bits) (J1XT1 to J4XT1) and the 4 output data words (O1XT1 to O4XT1) can be accessed by the application. Dedicated function blocks make it possible to:

■ break down a 'complete' type input (16 bits) into 16 separate "bit" type outputs. □ example: break down a Modbus type input (J1XT1 to J4XT1) and copy these status values to discrete outputs.

■ make up a 'complete' type output (16 bits) from 16 separate "bit" type outputs. □ example: transfer the status value of the discrete inputs or the status of a function to a Modbus type output (O1XT1 to O4XT1).

Modbus exchanges	Code	Number of words
→	Read/Write 16, 06 or 03	4
⇔	Read 03	4
₽ ⇒	Read/Write 16, 06 or 03	4
Status ⇔	Read 03	1

(1) See page 12. (2) See page 13.

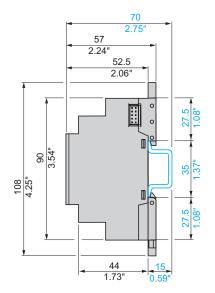
·				
bage 28	page 29	page 31	page 31	
Presentation:	Characteristics:	References:	Dimensions:	

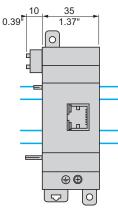
Telemecanique

References, dimensions, mounting

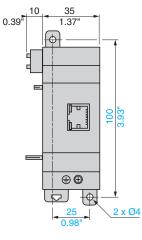
Zelio[®] Logic 2 Programmable Smart Relays Modbus[®] network slave communication module

References




Modbus network slave communication module For Reference Weight use with kg Modular smart relays SR3 MBU01BD 0.110 SR3 Bee1BD and SR3 Bee2BD (1)

Connection access	ories		
Description		Reference	Weight kg
T-junctions	Complete with 0.3 m (0.98 ft.) cable	VW3 A8 306TF03	-
	Complete with 1 m cable	VW3 A8 306TF10	-
	Without cable	170 XTS 04100	-
Cables with 2 x RJ45 connectors	Length 0.3 m (0.98 ft.)	VW3 A8306R03	-
	Length 1 m (3.28 ft.)	VW3 A8306R10	-
	Length 3 m (9.8 ft.)	VW3 A8306R30	-


(1) Compatible with SR3 Bee2BD featuring hardware version "H1.0.01", available since June 2005

Dimensions and mounting Side view

Rail mounting

Screw mounting

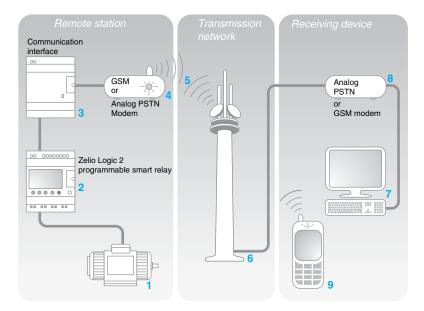
Dual Dimensions mm inches

	0	

Presentation

Zelio[®] Logic 2 Programmable Smart Relays

Modem communication interface


Presentation

The communication products in the Zelio Logic 2 range are primarily designed for monitoring or remote control of machines or installations which operate without personnel.

- Examples:
- monitoring of lift pumps, livestock premises (ventilation, food level, etc.),
- refrigeration units, car-washes,
- alert in the event of failure of industrial or domestic heating boilers,
- remote control of lighting: car parks, warehouses,
- remote control and monitoring of escalators in large stores, in the transport sector,
- refuse compact or full alert.

The communication range comprises:

- a communication interface connected between a smart relay and a Modem,
- GSM (1) or analog (PSTN) (2) Modems,
- "Zelio Logic Alarm" software.

The system comprises:

■ a *Remote station,* machine or installation to be monitored 1:

control is achieved using a smart relay with clock from the "Zelio Logic" SR• B••••• or SR2 E••••• 2 range, via its inputs and outputs. The smart relay is connected via a communication interface 3 to a GSM (1) type Modem 4, or, when a telephone line is available nearby, to an analog PSTN modem (2),

■ the GSM 5 or analog 6 *TRANSMISSION NETWORK* provided by different telecommunication operators,

- a monitoring or control *Receiving device*, which may be one of the following:
- □ a PC 7 fitted with an analog PSTN or GSM Modem 8,
- or a GSM telephone 9.

Note: the majority of Modems built into PCs can be used.

Various combinations are possible between the types of Modem used on the *Remote station* and the type of *Receiving device* (PC + Modems or GSM telephone). The type of architecture selected will therefore depend mainly on:

- whether or not an analog PSTN telephone line is available,
- whether or not it is necessary to send SMS messages, see page 35.

(1) Global System Mobile.

(2) Public Switched Telephone Network.

Functions, setting-up:	Characteristics:	References:	Dimensions:	Connections:
pages 34 to 35	page 37	page 38	page 39	pages 40 and 41

Telemecanique

Presentation (continued) description

Zelio[®] Logic 2 Programmable Smart Relays

Modem communication interface

Presentation (continued)

Smart relay (Remote station)

The smart relay, as on an independent machine or installation, is used for control (1). It contains the application program created using "Zelio Soft 2" software.

The smart relay may be selected from the various models in the Zelio Logic 2 range: for all supply voltages,

- with 10, 12, 20 or 26 I/O (up to 40 I/O with discrete extension module),
- with or without display,
- with clock.
- The firmware version of the smart relay must be V3.1. or above.

Modem communication interface (Remote station)

The Modem communication interface allows messages, telephone numbers and calling conditions to be stored.

When the calling conditions are met, the messages, as well as any values to be sent, are date-stamped and stored in the interface.

The Modem communication interface scales analog values to the physical values (degree, bar, Pascal, etc.) required by the user.

Modems

Either GSM or analog PSTN type Modems can be used on both the *Remote station* and PC type *Receiving devices* (when the PC is not fitted with an internal Modem).

GSM modem

In order to exploit all the capabilities associated with Modem communication, the Modem(s) must be fitted with DATA type SIM cards. VOICE type SIM cards may be used but some functions will not be available. See table on page 35.

"Zelio Logic Alarm" alarm management software (PC type Receiving device)

This software makes it possible to:

- receive, classify and export alarm messages,
- read or remotely force the status of program elements (inputs, outputs, control relays, timing or counting values, etc.),
- send control instructions (RUN, STOP, setting the time of the smart relay, etc.),
- send specific instructions (modifying access rights, recipients, etc.).

(1) Zelio Logic smart relays, see pages 8 to 28.

Description

The communication interface Zelio Logic SR2 COM01 comprises:

page 39

Retractable mounting feet.

- A = 12 to 24 V supply terminal block.
- A slot for connection to the Modem or the PC
- An interface status LED indicator.
- A connection cable to the smart relay.
- A spring clip for mounting on a 35 mm mounting rail.

unctions, setting-up.	Character
bages 34 to 35	page 37

33

Functions

Zelio[®] Logic 2 Programmable Smart Relays

Modem communication interface

Functions

Sending of alerts

This function makes it possible to send an alert to a *Receiving device*. When the calling condition is met, a message is sent to one or several telephone numbers or e-mail addresses.

- Types of message: ■ alert message to a PC with Modem and "Zelio Logic Alarm" software.
- SMS message (1) to a GSM telephone,
- e-mail via SMS (1) (2).

One or all of the solutions can be selected simultaneously.

- The Remote station to be monitored initiates the call.
- The telephone line is only used while the alert message is being transmitted. Up to 28 messages can be used.
- These messages consist of:
- a 160 character text, which may contain a discrete and/or analog value (counting values, analog input voltages that can be scaled, etc.).
- 1 to 10 recipient telephone numbers/e-mail addresses.

Receipt of instruction

This function allows the status or the value of a program element to be modified from the *Receiving device*.

The operator initiates the call using the *Receiving device* (PC or GSM telephone). It is then possible to force the status of the discrete and/or analog value of each of the 28 messages.

Remote dialogue using "Zelio Soft 2"

This function enables use of the Transfer, Monitoring and Diagnostics modes available in "Zelio Soft 2", via the *Transmission network* instead of the physical link (cable SR2 USB01 or SR2 CBL01) between the product (*Remote station*) and the PC (*Receiving device*).

- It is then possible to:
- transfer a program created on a PC station to the *Remote station*,
- transfer a program installed on the *Remote station* to the PC station,

modify, from the PC, the receiving device telephone numbers/e-mail addresses, and the alert sending conditions,

- update the firmware in the smart relay and the Modem communication interface,
- display and modify discrete and analog values,
- perform diagnostics on the smart relay and on the Modem communication interface.

(1) Requires the use of a GSM Modem on the Remote station side.

(2) Verify with the Transmission network operator that the e-mail by SMS service is available.

Zelio[®] Logic 2 Programmable Smart Relays Modem communication interface

Functions available depending on the hardware architecture and/or type of SIM card

and/or type of Shir card					
Function	Remote station device				
	Analog PSTN Modem	GSM Modem			
		Type of SIM card			
	DATA DATA		DATA VOI	DATA VOICE	
			DATA N°	VOICE N°	
Send alert/receive instruction with GSM telephone					
Send alert/receive instruction with PC running "Zelio Logic Alarm" software (1)					
Transfer program Update firmware Monitoring					
Send alert to e-mail address					

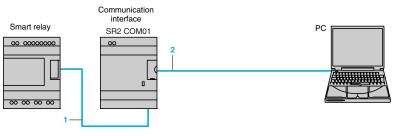
Functions available

Functions not available

Note: Instructions cannot be transmitted by e-mail.

(1) When using a GSM Modem on the PC side, the SIM card must have a DATA number.

Presentation:	Characteristics:	References:	Dimensions:	Connections:
pages 32 and 33	page 37	page 38	page 39	pages 40 and 41


Zelio[®] Logic 2 Programmable Smart Relays

Modem communication interface

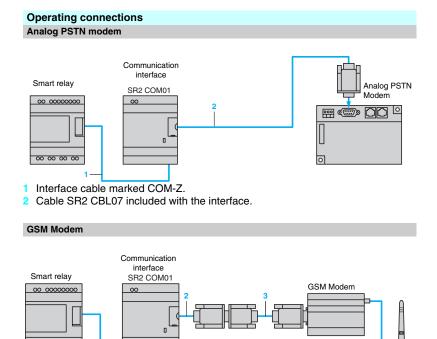
Installation set-up

Setting-up of the installation or the machine to be monitored involves 2 steps:

Connection for programming the smart relay and the interface

1 Interface cable marked COM-Z

2 Cable SR2 USB01 or SR2 CBL01.


After having powered-up the smart relay and the interface, the application program can be transferred in order to simultaneously:

load the automation system program into the smart relay,

■ load the alert conditions, messages and telephone numbers/e-mail addresses into the interface.

This operation can also be carried out remotely using "Transfer" mode, after having made the operating connections described below.

 \triangle Program loading using memory cartridges SR2 MEM01 or SR2 MEM02 is incompatible with Modem communication interface SR2 COM01.

1 Interface cable marked COM-Z.

- 2 Cable SR2 CBL07 included with the interface.
- 3 SUB-D 9/SUB-D 15 cable included with the Modem
- 4 Antenna and cable included with the Modem.

Presentation:	Characteristics:	References:	Dimensions:	Connections:
pages 32 and 33	page 37	page 38	page 39	pages 40 and 41

Telemecanique

00 00 00 00

Due duration of the st	Frederand 1 1 C						
Product certifications	Environment category C		UL, CSA, C-Tick				
Degree of protection Ambient air	Operation	°C (°F)	IP 20 - 20 to + 55 (- 4 to 131) confo	ming to IEC/EN 60060	2 1 and 60068 2 2		
temperature	Operation Storage		, ,				
Maximum relative humi	•	°C (°F)	- 25 to + 70 (- 13 to 158) cont 95% without condensation or	•	-2		
Maximum operating alt		m (ft.)	2000 (6562)	unpping water			
Mechanical resistance			Conforming to IEC/EN 60068	-2-6 test Ec			
			± 1 mm (0.04") 2 to 13.2 Hz,				
			± 0.15 mm ((0.01") 13.2 to 57	'.6 Hz			
			2 gn (57.6 to 150 Hz				
	Shock resistance		Conforming to IEC/EN 60068				
Resistance to electrost			Conforming to IEC/EN 61000-4-2 level 3, 8 kV air, 6 kV at the contacts Conforming to IEC/EN 61000-4-3 level 3, 10 V per metre				
Resistance to IF interference	Immunity to radiated electromagnetic fields		Conforming to IEC/EN 61000-4-3 level 3, 10 v per metre				
	Immunity to fast		Conforming to IEC/EN 61000-4-4 level 3				
	transients in bursts		g 12 120,211 01000				
	Immunity to shock waves		Conforming to IEC/EN 61000-4-5, on common mode supply 1 kV, serial mode supply 0.5 kV				
	Immunity to damped		Conforming to IEC/EN 61000-4-12, on 1 kV supply, 30 seconds, 4 periods				
	oscillation waves		IEC/EN 61000-4-6, 10 kHz to 80 MHz level 3: 10 V				
	Conducted interference induced by radiated fields						
Connection to	Flexible cable	mm ²	² 1 conductor: 0.14 to 1.5, AWG26 to AWG16 cable				
crew terminals	with cable end		2 conductors: 0.14 to 0.75, A				
tightened using	Semi-solid cable	mm ²	1 conductor: 0.14 to 2.5, AWG26 to AWG14 cable 1 conductor: 0.14 to 2.5, AWG26 to AWG14 cable				
Ø 3.5 screwdriver)	Solid cable	mm ²					
			2 conductors: 0.14 to 1.5, AWG26 to AWG16 cable				
Tightening torque			0.6				
Supply characte	eristics						
Interface type			SR2 COM01	SR2 MOD01	SR2 MOD02		
Nominal voltage		v	12 to 24				
/oltage limits		v	10 to 28.8	10 to 30	5.5 to 32		
/laximum ripple			5 %	-	-		
Nominal current	<u> </u>	mA	30	140	125		
	<u> </u>	mA	30	70	60		
	Current peak on power-up	mA	550	9600	2100 on 5.5 V		
Power dissipated		w	1.1	1.7	1.5		
Micro-breaks	Permissible duration		1 ms, repeated 20 times	-	-		
Protection	Integrated		Against reversed polarity	-	-		
	To be provided externally	Α	1 A fuse	-	Supplied with 2.5 A fuse		
Characteristics	of "Com-Z" link with	the sr	nart relay				
Type of connector			Specific to Zelio				
Type of link			Specific Zelio communication	protocol			
Compatibility			Only with Zelio Logic smart re	elays SRe Beeeee and S	R2 Eeeee version V3.1 and above		
solation of	From the "Com-M" connector		By \sim 1780 V opto-coupler				
'Com-Z" connector	From the +/- supply terminals		By \sim 1780 V opto-coupler				
Characteristics	of "Com-M" link with	the N	lodem				
Type of connector			Specific to Zelio				
Type of link with SR2 C	BL07		RS 232 serial (included with t	he communication interfa	ace)		
Compatibility	Analog PSTN modem		AT commands				
	GSM Modem		AT commands				
solation of	From the Modem		By the cable SR2 CBL07				
Com-M" connector	From the +/- supply terminals		By the cable SR2 CBL07				
Processing cha	racteristics						
Data saved	Messages		Up to 28 messages				
by the interface	Telephone/e-mail details		1 to 10 recipients (telephone	numbers and/or e-mail a	ddresses) per message		
	and recipient profiles						
	Date and time		Dating of messages to be ser	nt			
	Discrete and digital values		Backup of values when the m		ion is triggered.		

Dimensions: page 39

References

Zelio[®] Logic 2 Programmable Smart Relays Modem communication interface

Modem communication interface

Description

		voltage		kg
Communication in (including cable SR:		12 to 24 V	SR2 COM01 (1)	0.200
Software				
Description	Application Compatibility	Medium	Reference	Weight kg
Zelio Logic Alarm	PC Microsoft [®] Windows 98, NT4, 2000 and XP	CD-ROM	SR2 SFT02	0.200
Connection acc	essories			
Description	Application	Length	Reference	Weight
		m		kg
Connection cables	SUB-D9/SUB-D9 connectors Between modem and PC	1.8	SR1 CBL03	0.110
	Specific Zelio/SUB-D9 connector Between communication	0.5	SR2 CBL07 (2)	0.050

Supply

Weight

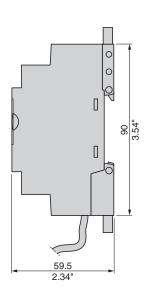
Reference

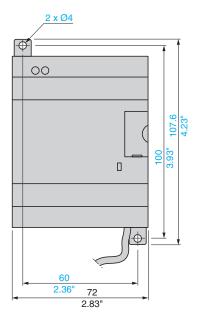
SR2 CBL07

523086

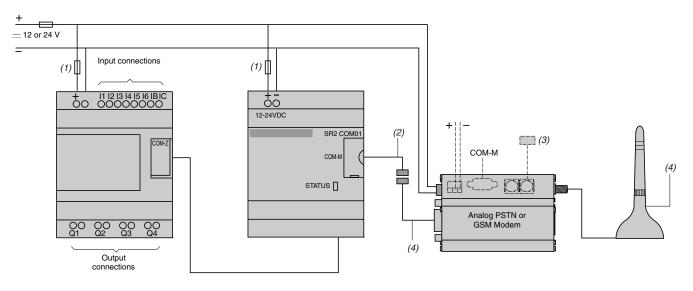
(1) Can only be used with "Zelio Soft 2" software version V3.1 or above.
 (2) Spare part (cable included with communication interface SR2 COM01).

functions:	Setting-up:
5	page 36



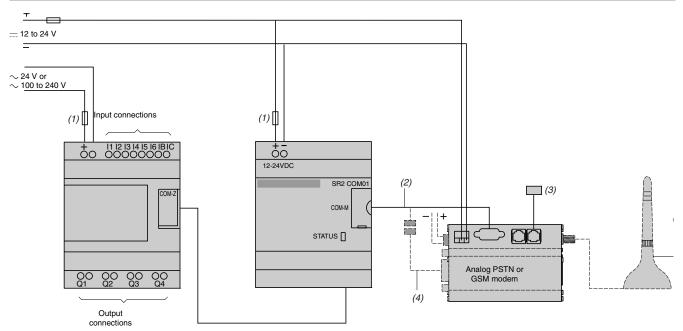

resentation, ages 32 to 3

Dual Dimensions mm inches


SR2 COM01

Connection schemes for connecting communication interface SR2 COM01 to the smart relay and the Modem

SRe Bee1JD, SRe BeeeBD et SR2 EeeeBD


(1) 1 A quick-blow fuse.

(2) Cable included with Modem communication interface SR2 COM01.

(3) Cable for connection to the Transmission network (included with analog PSTN modem).

(4) Antenna and cable included with GSM Modem.

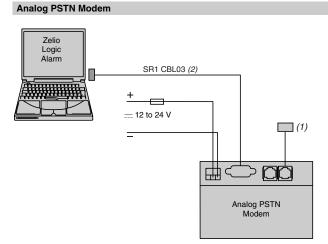
SRe Bee1B, SRe BeeeFU, SR2 EeeeB et SR2 EeeeFU

(1) 1 A quick-blow fuse.

(2) Cable included with Modem communication interface SR2 COM01.

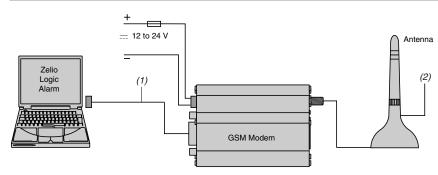
(3) Cable for connection to the Transmission network (included with analog PSTN modem).

(4) Antenna and cable included with GSM Modem.


resentation, functions:	Setting-up:
ages 32 to 35	page 36

Characte page 37

page 38


Connection schemes for connecting the PC to the Modem

For PCs without an internal Modem.

(1) Cable for connection to the Transmission network (included with analog PSTN modem). (2) To be ordered separately.

GSM Modem

(1) Cable included with the Modem, length 50 cm (19.7"). The cable length can be increased using SR1 CBL03, 1,8 m (5.9 ft.). (2) Antenna and cable included with GSM Modem.

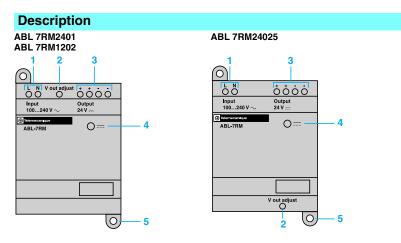
Presentation, functions:	Setting-up:	Characteristics:	References:	Dimensions:
pages 32 to 35	page 36	page 37	page 38	page 39

Power supplies

Power supplies for d.c. control circuits Phaseo[®] modular regulated power supplies

Modular switch mode power supplies ABL 7RM

The ABL 7RM range of power supplies is designed to provide the d.c. voltage necessary for the control circuits of automation system equipment. Comprising 3 products, this range meets the needs encountered in industrial, commercial and residential applications. These single-phase, modular, electronic switch mode power supplies provide a quality of output current which is suitable for the loads supplied and compatible with the Zelio Logic 2 programmable smart relays range, making them ideal partners. Clear guidelines are given on selecting the upstream protection devices which are often used with them, and thus a comprehensive solution is provided that can be used in total safety.


These switch mode power supplies are totally electronic and regulated. The use of electronics makes it possible to significantly improve the performance of these power supplies, which offer:

- very compact size,
- integrated overload, short-circuit, overvoltage and undervoltage protection,
- a very wide range of permissible input voltages, without any adjustment,
- a high degree of output voltage stability,
- good performance,
- considerably reduced weight,
- a modular format allowing integration into panels.

Phaseo power supplies deliver a voltage which is precise to 3%, whatever the load and whatever the type of mains supply, within a range of 85 to 264 V for single-phase. Conforming to IEC standards and UL and CSA certified, they are suitable for universal use. The inclusion of overload and short-circuit protection makes downstream protection unnecessary if discrimination is not required. All the products are fitted with an output voltage adjustment potentiometer in order to be able to compensate for any line voltage drops in installations with long cable runs. These power supplies are designed for direct mounting on 35 mm (1.38") and 75 mm (2.95") - rails, or on a mounting plate using the retractable mounting feet.

These power supplies are single-phase and three references are available:

- ABL 7RM2401 (24 V ---/1.3 A),
- ABL 7RM24025 (24 V ---/2.5 A),
- ABL 7RM1202 (12 V ---/1.9 A).

- 1 2.5 mm² (# 14 AWG) screw terminals for connection of the incoming a.c. supply voltage.
- 2 Output voltage adjustment potentiometer.
- 3 2.5 mm² (# 14 AWG) screw terminals for connection of the output voltage.
- 4 LED indicating presence of the d.c. output voltage.
- 5 Retractable mounting feet.

Power supplies Power supplies for d.c. control circuits Phaseo[®] modular regulated power supplies

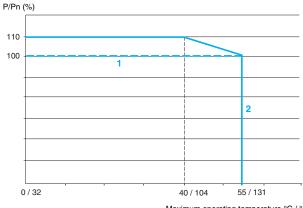
Power supply type			ABL 7RM1202	ABL 7RM2401	ABL 7RM24025			
Certifications			UL - CSA - TÜV					
Conforming to standards	Safety		IEC/EN 60950-1 - IEC/EN 61131-2/A11 IEC/EN 60950-1					
, and the second s	EMC			N 61000-6-1), IEC/EN 61000-				
Input circuit			120/21101000002 (120/2					
			NI-					
ED indication	Nie wie eine kaarte e	v	No					
nput voltage	Nominal values	v V	∼ 100 to 240 ∼ 85 to 264					
	Permissible values	v Hz	47 to 63					
	Permissible frequencies	пz						
	Efficiency at nominal load		> 80% > 84%					
	Current consumption Current at switch-on	A A	0.5 (100 V)/0.3 (240 V) < 20	0.6 (100 V)/0.4 (240 V)	1.2 (120 V)/0.7 (240 V) < 90 for 1 ms			
	Power factor	A			< 90 for 1 ms			
O	Power factor		0.6					
Output circuit								
_ED indication			Green LED					
Nominal output voltage		v	<u> </u>	24				
Nominal output current		Α	1.9	1.3	2.5			
Precision	Output voltage		Adjustable from 100 to 120%					
	Line and load regulation		±4%	± 3 %				
	Residual ripple - interference	mV	200	250	200			
Micro-breaks	Holding time for I max and Ue min	ms	> 10					
Protection	Against short-circuits		Permanent/Thermal prote	ection				
	Against overcurrent, cold state		< 1.7 ln	< 1.6 ln	< 1.4 ln			
	Against overvoltage	٧	< 10.5	< 19				
Operating characte	ristics							
Connections	Input	mm² (AWG)	1 x 2.5 (#14 AWG) or 2 x 1.5 (#16 AWG) screw terminals					
	Output	mm² (AWG)	1 x 2.5 (#14 AWG) or 2 x 1.5 (#16 AWG) screw terminals					
Environment	Storage temperature	°C (°F)	c) - 25 to + 70 (-13 to + 158) - 40 to + 70 (-40 to					
	Operating temperature	°C (°F)	- 20 to + 55 (-4 to + 131)					
	Maximum relative humidity		95 %					
	Degree of protection		IP 20					
	Vibration		IEC/EN 61131-2, IEC/EN 60068-2-6 test Fc					
Operating position			Vertical					
Connections	Series		No					
	Parallel		Yes (same references)					
Dielectric strength	Input/output		3000 Vac/50 Hz/1 min					
Protection class conforming to VDE 0106 1			Class II without PE					
Input fuse incorporated			Yes (not interchangeable)					
missions	Conducted/radiated		IEC/EN 61000-6-3, EN 55					
mmunity	Electrostatic discharge		IEC/EN 61000-6-2 (gener	ic standard), IEC/EN 61000-4	-2 (4 kV contact/8 kV air)			
-	Electromagnetic		IEC/EN 61000-4-3 level 3	1.	,			
	Conducted interference			(2 kV), IEC/EN 61000-4-6 (10) V)			
	Mains interference		IEC/EN 61000-4-11					

resent	ation:
bage 42	

Schemes: page 45

Characteristics (continued), selection

Power supplies


Power supplies for d.c. control circuits Phaseo[®] modular regulated power supplies

Output characteristics

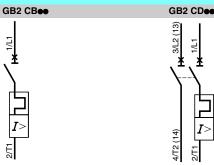
Exceeding the nominal power (only applicable to ABL 7RM1202 and ABL 7RM2401)

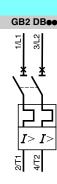
The ambient temperature is a determining factor which limits the power that an electronic power supply can deliver continuously. If the temperature around the electronic components is too high, their life will be significantly reduced. Conversely, a power supply can deliver more than its nominal power if the ambient temperature remains well below the nominal operating temperature.

The maximum ambient temperature for Phaseo power supplies is 55 °C (131 °F). Below this temperature, uprating is possible up to 110% of the nominal power. The graph below shows the power (in relation to the nominal power) that the power supply can deliver continuously, according to the ambient temperature. Power supply ABL 7RM24025 cannot exceed the nominal power of 60 W.

Maximum operating temperature °C / °F

ABL 7RM24025 1


ABL 7RM1202 and ABL 7RM2401 2


Selection

Type of mains supply	\sim 100 V single	\sim 100 V single-phase			\sim 240 V single-phase		
Type of protection	Thermal-magnetic circuit-breaker		Fuse gG	Thermal-magnetic circuit-breaker		Fuse, gG	
	GB2 (UL/IEC)	C60N (IEC) C60N (UL)		GB2 (UL/IEC)	C60N (IEC) C60N (UL)		
ABL 7RM1202	GB2 ●●06	24580 24516	1 A	GB2 ●●05	24494 24516	1 A	
ABL 7RM2401	GB2 ●●06	24580 24516	1 A	GB2 ●●06	24580 24516	1 A	
ABL 7RM24025	GB2 ●08	24582 24518	3 A	GB2 ●●08	24582 24518	3 A	

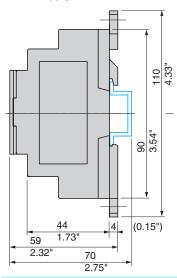
Schemes

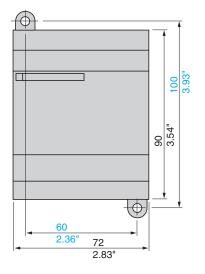
1/1

GB2 CSee

Presentation:	References:	Dimensions:	Schemes:
page 42	page 45	page 45	page 45

Power supplies Power supplies for d.c. control circuits Phaseo[®] modular regulated power supplies

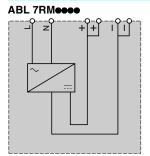

Modular regulated s	witch mode power su	pplies AE	BL 7RM (1)		
12 1012000	Mains input voltage 47 to 63 Hz	Output voltage	Nominal power	Nominal current	Auto-protect reset	Reference
Winne Harr	V	<u> </u>	W	Α		
Concession Alternation	100 to 240 Single-phase	12	22	1.9	Auto	ABL 7RM1202
	wide range	24	30	1.3	Auto	ABL 7RM2401
			60	2.5	Auto	ABL 7RM24025


ABL 7RM

(1) For additional products, please contact your local Schneider Electric representative.

Dimensions

Power supply ABL 7RM



Dual Dimensions mm inches

Weight kg 0.180 0.182 0.255

Scheme

L 16	2261	παι	IUI
pa	ae 4	2	

Product Reference Index

Zelio[®] Logic 2 Programmable Smart Relays

14210	SR3 XT101JD21
14211	SR3 XT141B21
170 XTS 0410031	SR3 XT141BD21
ABL 7RM120245	SR3 XT141FU21
ABL 7RM240145	SR3 XT141JD21
ABL 7RM2402545	SR3 XT43BD (1) (5) 21
See page 4522	SR3 XT61B
SR1 CBL03 38	SR3 XT61BD21
SR2 MEM0122	SR3 XT61FU21
SR2 MEM0222	SR3 XT61JD 21
SR2 A101BD (1)20	VW3 A8 306TF0331
SR2 A101FU (1)20	VW3 A8 306TF1031
SR2 A201BD (1)20	VW3 A8306R0331
SR2 A201FU (1)20	VW3 A8306R1031
SR2 B121B	VW3 A8306R3031
SR2 B121BD20	
SR2 B121FU	
SR2 B121JD20	
SR2 B122BD20	
SR2 B201B	
SR2 B201BD20 SR2 B201FU20	
SR2 B201JD	
SR2 B202BD20	
SR2 CBL01	
SR2 CBL06	
SR2 CBL07	
SR2 COM01	
SR2 D101BD (1)20	
SR2 D101FU (1)20	
SR2 D201BD (1) 20	
SR2 D201FU (1)20	
SR2 E121B	
SR2 E121BD20	
SR2 E121FU	
SR2 E201B	
SR2 E201BD20 SR2 E201FU20	
SR2 MAN01DE22	
SR2 MAN01EN22	
SR2 MAN01ES22	
SR2 MAN01FR22	
SR2 MAN01IT	
SR2 MAN01P022	
SR2 PACK2BD 20	
SR2 PACK2FU20	
SR2 PACKBD20	
SR2 PACKFU20	
SR2 SFT01	
SR2 SFT02	
SR2 USB0122	
SR3 MBU01BD 31	
SR3 B101B	
SR3 B101BD 21	
SR3 B102BD 21	
SR3 B261B	
SR3 B261BD21	
SR3 B261FU	
SR3 B261JD (1)21	
SR3 B262BD21	
SR3 PACK2BD21	
SR3 PACK2FU21	
SR3 PACKBD21	
SR3 PACKFU21	
SR3 XT101B	
SR3 XT101BD21	
SR3 XT101FU21	

The efficiency of Telemecanique[®] branded *solutions*

Used in combination, Telemecanique products provide quality solutions, meeting all your Automation & Control applications requirements.

A worldwide presence

Constantly available

More than 5 000 points of sale in 130 countries.

• You can be sure to find the range of products that are right for you and which complies fully with the standards in the country where they are used.

Technical assistance wherever you are

• Our technicians are at your disposal to assist you in finding the optimum solution for your particular needs.

Schneider Electric provides you with all necessary technical assistance, throughout the world.

Find out more about Zelio Logic

- for your applications with the "discovery" packs: pack contains:
- 1 product, 1 connecting cable and 1 software CD
- available in 24 Vdc or 100...240Vac

Schneider Electric

Head office Schneider Electric North American Operation Division 1415 South Roselle Road Palatine, IL 60064 TEL 847-397-2600

http://www.us.telemecanique.com http://www.us.schneider-electric.com

Simply Smart !

January 2007

Owing to changes in standards and equipment, the characteristics given in the text and images in this document are not binding us until they have been confirmed with us.

Production : Schneider Electric Industries Photos : Schneider Electric Industries Printed by : DIA3ED2051002EN-US

DIA3ED2051002EN-US © 2007 Schneider Electric. All Rights Reserved.